Publications

Found 943 results
Filters: First Letter Of Title is S  [Clear All Filters]
Journal Article
Jost, M., Born, D. A., Cracan, V., Banerjee, R., and Drennan, C. L. (2015) Structural Basis for Substrate Specificity in Adenosylcobalamin-dependent Isobutyryl-CoA Mutase and Related Acyl-CoA Mutases. J Biol Chem. 290, 26882-98
Karasawa, A., and Kawate, T. (2016) Structural basis for subtype-specific inhibition of the P2X7 receptor. Elife. 10.7554/eLife.22153
Shi, K., Carpenter, M. A., Banerjee, S., Shaban, N. M., Kurahashi, K., Salamango, D. J., McCann, J. L., Starrett, G. J., Duffy, J. V., Demir, Ö., Amaro, R. E., Harki, D. A., Harris, R. S., and Aihara, H. (2017) Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. 24, 131-139
Singh, M., Wang, Z., Koo, B. - K., Patel, A., Cascio, D., Collins, K., and Feigon, J. (2012) Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol Cell. 47, 16-26
Polley, S., Passos, D. Oliveira, Bin Huang, D. -, Mulero, M. Carmen, Mazumder, A., Biswas, T., Verma, I. M., Lyumkis, D., and Ghosh, G. (2016) Structural Basis for the Activation of IKK1/α.. Cell Rep. 17, 1907-1914
Golczak, M., Kiser, P. D., Sears, A. E., Lodowski, D. T., Blaner, W. S., and Palczewski, K. (2012) Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins. J Biol Chem. 287, 23790-807
Wu, A., Salom, D., Hong, J. D., Tworak, A., Watanabe, K., Pardon, E., Steyaert, J., Kandori, H., Katayama, K., Kiser, P. D., and Palczewski, K. (2023) Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun. 14, 5209
Lietha, D., Cai, X., Ceccarelli, D. F. J., Li, Y., Schaller, M. D., and Eck, M. J. (2007) Structural basis for the autoinhibition of focal adhesion kinase. Cell. 129, 1177-87
Westblade, L. F., Campbell, E. A., Pukhrambam, C., Padovan, J. C., Nickels, B. E., Lamour, V., and Darst, S. A. (2010) Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res. 38, 8357-69
Schmier, B. J., Nelersa, C. M., and Malhotra, A. (2017) Structural Basis for the Bidirectional Activity of Bacillus nanoRNase NrnA. Sci Rep. 7, 11085
Dong, C., Liu, Y., Lyu, T. - J., Beldar, S., Lamb, K. N., Tempel, W., Li, Y., Li, Z., James, L. I., Qin, S., Wang, Y., and Min, J. (2020) Structural Basis for the Binding Selectivity of Human CDY Chromodomains. Cell Chem Biol. 10.1016/j.chembiol.2020.05.007
Liu, X., and Ladias, J. A. A. (2013) Structural basis for the BRCA1 BRCT interaction with the proteins ATRIP and BAAT1. Biochemistry. 52, 7618-27
Syroegin, E. A., Flemmich, L., Klepacki, D., Vázquez-Laslop, N., Micura, R., and Polikanov, Y. S. (2022) Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat Struct Mol Biol. 29, 152-161
Cuello, L. G., Jogini, V., D Cortes, M., Pan, A. C., Gagnon, D. G., Dalmas, O., Cordero-Morales, J. F., Chakrapani, S., Roux, B., and Perozo, E. (2010) Structural basis for the coupling between activation and inactivation gates in K(+) channels. Nature. 466, 272-5
Fisher, O. S., Liu, W., Zhang, R., Stiegler, A. L., Ghedia, S., Weber, J. L., and Boggon, T. J. (2015) Structural basis for the disruption of the cerebral cavernous malformations 2 (CCM2) interaction with Krev interaction trapped 1 (KRIT1) by disease-associated mutations. J Biol Chem. 290, 2842-53
Shankar, S., Chew, T. Weng, Chichili, V. Priyanka R., Low, B. Chuan, and Sivaraman, J. (2024) Structural basis for the distinct roles of non-conserved Pro116 and conserved Tyr124 of BCH domain of yeast p50RhoGAP. Cell Mol Life Sci. 81, 216
Nomura, Y., Montemayor, E. J., Virta, J. M., Hayes, S. M., and Butcher, S. E. (2019) Structural basis for the evolution of cyclic phosphodiesterase activity in the U6 snRNA exoribonuclease Usb1. Nucleic Acids Res. 10.1093/nar/gkz1177
Eiler, D., Wang, J., and Steitz, T. A. (2014) Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc Natl Acad Sci U S A. 111, 13028-33
Remus, B. S., Goldgur, Y., and Shuman, S. (2017) Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase. Nucleic Acids Res. 10.1093/nar/gkx1159
Syroegin, E. A., Aleksandrova, E. V., and Polikanov, Y. S. (2022) Structural basis for the inability of chloramphenicol to inhibit peptide bond formation in the presence of A-site glycine. Nucleic Acids Res. 50, 7669-7679
Joiner, A. M. N., and J Fromme, C. (2021) Structural basis for the initiation of COPII vesicle biogenesis. Structure. 10.1016/j.str.2021.03.013
Wang, L., Chakravarthy, S., and Verdine, G. L. (2017) Structural Basis for the Lesion-scanning Mechanism of the MutY DNA Glycosylase. J Biol Chem. 292, 5007-5017
Wang, B., and Song, J. (2019) Structural basis for the ORC1-Cyclin A association. Protein Sci. 28, 1727-1733
Zhou, M., Ehsan, F., Gan, L., Dong, A., Li, Y., Liu, K., and Min, J. (2021) Structural basis for the recognition of the S2, S5-phosphorylated RNA polymerase II CTD by the mRNA anti-terminator protein hSCAF4. FEBS Lett. 10.1002/1873-3468.14256
Zeqiraj, E., Tang, X., Hunter, R. W., García-Rocha, M., Judd, A., Deak, M., von Wilamowitz-Moellendorff, A., Kurinov, I., Guinovart, J. J., Tyers, M., Sakamoto, K., and Sicheri, F. (2014) Structural basis for the recruitment of glycogen synthase by glycogenin. Proc Natl Acad Sci U S A. 111, E2831-40

Pages