Publications

Found 610 results
Filters: First Letter Of Last Name is F  [Clear All Filters]
Journal Article
Ubah, O. C., Lake, E. W., Gunaratne, G. S., Gallant, J. P., Fernie, M., Robertson, A. J., Marchant, J. S., Bold, T. D., Langlois, R. A., Matchett, W. E., Thiede, J. M., Shi, K., Yin, L., Moeller, N. H., Banerjee, S., Ferguson, L., Kovaleva, M., Porter, A. J., Aihara, H., LeBeau, A. M., and Barelle, C. J. (2021) Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nat Commun. 12, 7325
Ubah, O. C., Lake, E. W., Gunaratne, G. S., Gallant, J. P., Fernie, M., Robertson, A. J., Marchant, J. S., Bold, T. D., Langlois, R. A., Matchett, W. E., Thiede, J. M., Shi, K., Yin, L., Moeller, N. H., Banerjee, S., Ferguson, L., Kovaleva, M., Porter, A. J., Aihara, H., LeBeau, A. M., and Barelle, C. J. (2021) Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nat Commun. 12, 7325
Kamadurai, H. B., Qiu, Y., Deng, A., Harrison, J. S., Macdonald, C., Actis, M., Rodrigues, P., Miller, D. J., Souphron, J., Lewis, S. M., Kurinov, I., Fujii, N., Hammel, M., Piper, R., Kuhlman, B., and Schulman, B. A. (2013) Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. Elife. 2, e00828
Latorraca, N. R., Fastman, N. M., Venkatakrishnan, A. J., Frommer, W. B., Dror, R. O., and Feng, L. (2017) Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell. 169, 96-107.e12
Latorraca, N. R., Fastman, N. M., Venkatakrishnan, A. J., Frommer, W. B., Dror, R. O., and Feng, L. (2017) Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell. 169, 96-107.e12
Latorraca, N. R., Fastman, N. M., Venkatakrishnan, A. J., Frommer, W. B., Dror, R. O., and Feng, L. (2017) Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell. 169, 96-107.e12
Lemma, B., Zhang, D., Vamisetti, G. B., Wentz, B. G., Suga, H., Brik, A., Lubkowski, J., and Fushman, D. (2023) Mechanism of selective recognition of Lys48-linked polyubiquitin by macrocyclic peptide inhibitors of proteasomal degradation. Nat Commun. 14, 7212
Brown, N. G., Watson, E. R., Weissmann, F., Jarvis, M. A., VanderLinden, R., Grace, C. R. R., Frye, J. J., Qiao, R., Dube, P., Petzold, G., Cho, S. Ei, Alsharif, O., Bao, J., Davidson, I. F., Zheng, J. J., Nourse, A., Kurinov, I., Peters, J. - M., Stark, H., and Schulman, B. A. (2014) Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Mol Cell. 56, 246-260
Matarlo, J. S., Evans, C. E., Sharma, I., Lavaud, L. J., Ngo, S. C., Shek, R., Rajashankar, K. R., French, J. B., Tan, D. S., and Tonge, P. J. (2015) Mechanism of MenE inhibition by acyl-adenylate analogues and discovery of novel antibacterial agents. Biochemistry. 54, 6514-6524
Du, J., Johnson, L. M., Groth, M., Feng, S., Hale, C. J., Li, S., Vashisht, A. A., Wohlschlegel, J. A., Patel, D. J., and Jacobsen, S. E. (2014) Mechanism of DNA methylation-directed histone methylation by KRYPTONITE. Mol Cell. 55, 495-504
Zhao, H., Xu, L., Bombardi, R., Nargi, R., Deng, Z., Errico, J. M., Nelson, C. A., Dowd, K. A., Pierson, T. C., Crowe, J. E., Diamond, M. S., and Fremont, D. H. (2020) Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. J Exp Med. 10.1084/jem.20191792
Fire, E., Gullá, S. V., Grant, R. A., and Keating, A. E. (2010) Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Protein Sci. 19, 507-19
Stewart, M. L., Fire, E., Keating, A. E., and Walensky, L. D. (2010) The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer. Nat Chem Biol. 6, 595-601
Chevalier, A., Silva, D. - A., Rocklin, G. J., Hicks, D. R., Vergara, R., Murapa, P., Bernard, S. M., Zhang, L., Lam, K. - H., Yao, G., Bahl, C. D., Miyashita, S. - I., Goreshnik, I., Fuller, J. T., Koday, M. T., Jenkins, C. M., Colvin, T., Carter, L., Bohn, A., Bryan, C. M., D Fernández-Velasco, A., Stewart, L., Dong, M., Huang, X., Jin, R., Wilson, I. A., Fuller, D. H., and Baker, D. (2017) Massively parallel de novo protein design for targeted therapeutics. Nature. 550, 74-79
Chevalier, A., Silva, D. - A., Rocklin, G. J., Hicks, D. R., Vergara, R., Murapa, P., Bernard, S. M., Zhang, L., Lam, K. - H., Yao, G., Bahl, C. D., Miyashita, S. - I., Goreshnik, I., Fuller, J. T., Koday, M. T., Jenkins, C. M., Colvin, T., Carter, L., Bohn, A., Bryan, C. M., D Fernández-Velasco, A., Stewart, L., Dong, M., Huang, X., Jin, R., Wilson, I. A., Fuller, D. H., and Baker, D. (2017) Massively parallel de novo protein design for targeted therapeutics. Nature. 550, 74-79
Chevalier, A., Silva, D. - A., Rocklin, G. J., Hicks, D. R., Vergara, R., Murapa, P., Bernard, S. M., Zhang, L., Lam, K. - H., Yao, G., Bahl, C. D., Miyashita, S. - I., Goreshnik, I., Fuller, J. T., Koday, M. T., Jenkins, C. M., Colvin, T., Carter, L., Bohn, A., Bryan, C. M., D Fernández-Velasco, A., Stewart, L., Dong, M., Huang, X., Jin, R., Wilson, I. A., Fuller, D. H., and Baker, D. (2017) Massively parallel de novo protein design for targeted therapeutics. Nature. 550, 74-79
Washington, A. Z., Benicewicz, D. B., Canzoneri, J. C., Fagan, C. E., Mwakwari, S. C., Maehigashi, T., Dunham, C. M., and Oyelere, A. K. (2014) Macrolide-peptide conjugates as probes of the path of travel of the nascent peptides through the ribosome. ACS Chem Biol. 9, 2621-31
Amrhein, J. A., Beyett, T. S., Feng, W. W., Krämer, A., Weckesser, J., Schaeffner, I. K., Rana, J. K., Jänne, P. A., Eck, M. J., Knapp, S., and Hanke, T. (2022) Macrocyclization of Quinazoline-Based EGFR Inhibitors Leads to Exclusive Mutant Selectivity for EGFR L858R and Del19. J Med Chem. 65, 15679-15697
Tayeb-Fligelman, E., Bowler, J. T., Tai, C. E., Sawaya, M. R., Jiang, Y. Xiao, Garcia, G., Griner, S. L., Cheng, X., Salwinski, L., Lutter, L., Seidler, P. M., Lu, J., Rosenberg, G. M., Hou, K., Abskharon, R., Pan, H., Zee, C. - T., Boyer, D. R., Li, Y., Anderson, D. H., Murray, K. A., Falcon, G., Cascio, D., Saelices, L., Damoiseaux, R., Arumugaswami, V., Guo, F., and Eisenberg, D. S. (2023) Low complexity domains of the nucleocapsid protein of SARS-CoV-2 form amyloid fibrils. Nat Commun. 14, 2379
Berkovitch, F., Behshad, E., Tang, K. - H., Enns, E. A., Frey, P. A., and Drennan, C. L. (2004) A locking mechanism preventing radical damage in the absence of substrate, as revealed by the x-ray structure of lysine 5,6-aminomutase. Proc Natl Acad Sci U S A. 101, 15870-5
Rivkin, E., Almeida, S. M., Ceccarelli, D. F., Juang, Y. - C., MacLean, T. A., Srikumar, T., Huang, H., Dunham, W. H., Fukumura, R., Xie, G., Gondo, Y., Raught, B., Gingras, A. - C., Sicheri, F., and Cordes, S. P. (2013) The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature. 498, 318-24
Huang, W. Mun, DaGloria, J., Fox, H., Ruan, Q., Tillou, J., Shi, K., Aihara, H., Aron, J., and Casjens, S. (2012) Linear chromosome-generating system of Agrobacterium tumefaciens C58: protelomerase generates and protects hairpin ends. J Biol Chem. 287, 25551-63
Münzker, L., Kimani, S. W., Fowkes, M. M., Dong, A., Zheng, H., Li, Y., Dasovich, M., Zak, K. M., Leung, A. K. L., Elkins, J. M., Kessler, D., Arrowsmith, C. H., Halabelian, L., and Böttcher, J. (2024) A ligand discovery toolbox for the WWE domain family of human E3 ligases. Commun Biol. 7, 901
Turlington, Z. R., de Macedo, S. Vaz Ferrei, Perry, K., Belsky, S. L., Faust, J. A., Snider, M. J., and Hicks, K. A. (2023) Ligand bound structure of a 6-hydroxynicotinic acid 3-monooxygenase provides mechanistic insights. Arch Biochem Biophys. 752, 109859
French, J. B., Yates, P. A., D Soysa, R., Boitz, J. M., Carter, N. S., Chang, B., Ullman, B., and Ealick, S. E. (2011) The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. J Biol Chem. 286, 20930-41

Pages