Found 928 results
Filters: First Letter Of Title is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Polley, S., Bin Huang, D. -, Hauenstein, A. V., Fusco, A. J., Zhong, X., Vu, D., Schröfelbauer, B., Kim, Y., Hoffmann, A., Verma, I. M., Ghosh, G., and Huxford, T. (2013) A structural basis for IκB kinase 2 activation via oligomerization-dependent trans auto-phosphorylation.. PLoS Biol. 11, e1001581
Pomerantz, W. Charles Kr, Cui, H., Divakaran, A., Pandey, A. K., Johnson, J. A., Zahid, H., Hoell, Z. J., Ellingson, M. O., Shi, K., Aihara, H., and Harki, D. A. (2020) Selective N-terminal BRD4 bromodomain inhibitors by targeting non-conserved residues and structured water displacement. Angew Chem Int Ed Engl. 10.1002/anie.202008625
Porter, N. J., Christianson, N. H., Decroos, C., and Christianson, D. W. (2016) Structural and Functional Influence of the Glycine-Rich Loop G(302)GGGY on the Catalytic Tyrosine of Histone Deacetylase 8. Biochemistry. 55, 6718-6729
Pourfarjam, Y., Ma, Z., Kurinov, I., Moss, J., and Kim, I. - K. (2021) Structural and biochemical analysis of human ADP-ribosyl-acceptor hydrolase 3 (ARH3) reveals the basis of metal selectivity and different roles for the two Mg ions. J Biol Chem. 10.1016/j.jbc.2021.100692
Pourfarjam, Y., Ventura, J., Kurinov, I., Cho, A., Moss, J., and Kim, I. - K. (2018) Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. J Biol Chem. 293, 12350-12359
Prew, M. S., Camara, C. M., Botzanowski, T., Moroco, J. A., Bloch, N. B., Levy, H. R., Seo, H. - S., Dhe-Paganon, S., Bird, G. H., Herce, H. D., Gygi, M. A., Escudero, S., Wales, T. E., Engen, J. R., and Walensky, L. D. (2022) Structural basis for defective membrane targeting of mutant enzyme in human VLCAD deficiency. Nat Commun. 13, 3669
Priest, J. M., Nichols, E. L., Smock, R. G., Hopkins, J. B., Mendoza, J. L., Meijers, R., Shen, K., and zkan, E. Ö. (2024) Structural insights into the formation of repulsive netrin guidance complexes. Sci Adv. 10, eadj8083
Pruitt, R. N., Chumbler, N. M., Rutherford, S. A., Farrow, M. A., Friedman, D. B., Spiller, B., and D Lacy, B. (2012) Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. J Biol Chem. 287, 8013-20
M Puno, R., and Lima, C. D. (2018) Structural basis for MTR4-ZCCHC8 interactions that stimulate the MTR4 helicase in the nuclear exosome-targeting complex. Proc Natl Acad Sci U S A. 10.1073/pnas.1803530115
Radakovic, A., Lewicka, A., Todisco, M., Aitken, H. R. M., Weiss, Z., Kim, S., Bannan, A., Piccirilli, J. A., and Szostak, J. W. (2024) Structure-guided aminoacylation and assembly of chimeric RNAs. bioRxiv. 10.1101/2024.03.02.583109
Rajagopalan, S., Teter, S. J., Zwart, P. H., Brennan, R. G., Phillips, K. J., and Kiley, P. J. (2013) Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol. 20, 740-7
Ramagopal, U. A., Liu, W., Garrett-Thomson, S. C., Bonanno, J. B., Yan, Q., Srinivasan, M., Wong, S. C., Bell, A., Mankikar, S., Rangan, V. S., Deshpande, S., Korman, A. J., and Almo, S. C. (2017) Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc Natl Acad Sci U S A. 114, E4223-E4232
Rechkoblit, O., Gupta, Y. K., Malik, R., Rajashankar, K. R., Johnson, R. E., Prakash, L., Prakash, S., and Aggarwal, A. K. (2016) Structure and mechanism of human PrimPol, a DNA polymerase with primase activity. Sci Adv. 2, e1601317
Rechkoblit, O., Johnson, R. E., Gupta, Y. K., Prakash, L., Prakash, S., and Aggarwal, A. K. (2021) Structural basis of DNA synthesis opposite 8-oxoguanine by human PrimPol primase-polymerase. Nat Commun. 12, 4020
Rechkoblit, O., Choudhury, J. Roy, Buku, A., Prakash, L., Prakash, S., and Aggarwal, A. K. (2018) Structural basis for polymerase η-promoted resistance to the anticancer nucleoside analog cytarabine.. Sci Rep. 8, 12702
Rechkoblit, O., Johnson, R. E., Buku, A., Prakash, L., Prakash, S., and Aggarwal, A. K. (2019) Structural insights into mutagenicity of anticancer nucleoside analog cytarabine during replication by DNA polymerase η.. Sci Rep. 9, 16400
Rees, H. C., Gogacz, W., Li, N. - S., Koirala, D., and Piccirilli, J. A. (2022) Structural Basis for Fluorescence Activation by Pepper RNA. ACS Chem Biol. 17, 1866-1875
Reha-Krantz, L. J., Hariharan, C., Subuddhi, U., Xia, S., Zhao, C., Beckman, J., Christian, T., and Konigsberg, W. (2011) Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Biochemistry. 50, 10136-49
Reimer, J. M., Harb, I., Ovchinnikova, O. G., Jiang, J., Whitfield, C., and T Schmeing, M. (2018) Structural Insight into a Novel Formyltransferase and Evolution to a Nonribosomal Peptide Synthetase Tailoring Domain. ACS Chem Biol. 10.1021/acschembio.8b00739
Reimer, J. M., Eivaskhani, M., Harb, I., Guarné, A., Weigt, M., and T Schmeing, M. (2019) Structures of a dimodular nonribosomal peptide synthetase reveal conformational flexibility. Science. 10.1126/science.aaw4388
Reinke, A. W., Grant, R. A., and Keating, A. E. (2010) A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J Am Chem Soc. 132, 6025-31
Reiss, C. W., and Strobel, S. A. (2017) Structural basis for ligand binding to the guanidine-II riboswitch. RNA. 23, 1338-1343
Reiss, C. W., Xiong, Y., and Strobel, S. A. (2017) Structural Basis for Ligand Binding to the Guanidine-I Riboswitch. Structure. 25, 195-202
Remus, B. S., Goldgur, Y., and Shuman, S. (2017) Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase. Nucleic Acids Res. 10.1093/nar/gkx1159