Publications

Found 954 results
Filters: First Letter Of Title is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Shankar, S., Chew, T. Weng, Chichili, V. Priyanka R., Low, B. Chuan, and Sivaraman, J. (2024) Structural basis for the distinct roles of non-conserved Pro116 and conserved Tyr124 of BCH domain of yeast p50RhoGAP. Cell Mol Life Sci. 81, 216
Shao, Y., Huang, H., Qin, D., Li, N. - S., Koide, A., Staley, J. P., Koide, S., Kossiakoff, A. A., and Piccirilli, J. A. (2016) Specific Recognition of a Single-Stranded RNA Sequence by a Synthetic Antibody Fragment. J Mol Biol. 428, 4100-4114
Sharkey, M. A., Oliveira, T. F., Engel, P. C., and Khan, A. R. (2013) Structure of NADP(+)-dependent glutamate dehydrogenase from Escherichia coli--reflections on the basis of coenzyme specificity in the family of glutamate dehydrogenases. FEBS J. 280, 4681-92
Sharma, H., Yu, S., Kong, J., Wang, J., and Steitz, T. A. (2009) Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc Natl Acad Sci U S A. 106, 16604-9
Sharon, I., Grogg, M., Hilvert, D., and T Schmeing, M. (2022) The structure of cyanophycinase in complex with a cyanophycin degradation intermediate. Biochim Biophys Acta Gen Subj. 1866, 130217
Sharon, I., Haque, A. S., Grogg, M., Lahiri, I., Seebach, D., Leschziner, A. E., Hilvert, D., and T Schmeing, M. (2021) Structures and function of the amino acid polymerase cyanophycin synthetase. Nat Chem Biol. 17, 1101-1110
Shechner, D. M., and Bartel, D. P. (2011) The structural basis of RNA-catalyzed RNA polymerization. Nat Struct Mol Biol. 18, 1036-42
Sheetz, J. B., Mathea, S., Karvonen, H., Malhotra, K., Chatterjee, D., Niininen, W., Perttilä, R., Preuss, F., Suresh, K., Stayrook, S. E., Tsutsui, Y., Radhakrishnan, R., Ungureanu, D., Knapp, S., and Lemmon, M. A. (2020) Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Mol Cell. 79, 390-405.e7
Shek, R., Dattmore, D. A., Stives, D. P., Jackson, A. L., Chatfield, C. H., Hicks, K. A., and French, J. B. (2017) Structural and functional basis for targeting Campylobacter jejuni agmatine deiminase to overcome antibiotic resistance. Biochemistry. 10.1021/acs.biochem.7b00982
Shek, R., Hilaire, T., Sim, J., and French, J. B. (2019) Structural Determinants for Substrate Selectivity in Guanine Deaminase Enzymes of the Amidohydrolase Superfamily. Biochemistry. 58, 3280-3292
Shelke, S. A., Shao, Y., Laski, A., Koirala, D., Weissman, B. P., Fuller, J. R., Tan, X., Constantin, T. P., Waggoner, A. S., Bruchez, M. P., Armitage, B. A., and Piccirilli, J. A. (2018) Structural basis for activation of fluorogenic dyes by an RNA aptamer lacking a G-quadruplex motif. Nat Commun. 9, 4542
Shen, J., Wu, G., Tsai, A. - L., and Zhou, M. (2020) Structure and Mechanism of a Unique Diiron Center in Mammalian Stearoyl-CoA Desaturase. J Mol Biol. 432, 5152-5161
Shen, G., Li, S., Cui, W., Liu, S., Liu, Q., Yang, Y., Gross, M., and Li, W. (2018) Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition. J Thromb Haemost. 16, 1164-1175
Sheng, Y., Gralla, E. Butler, Schumacher, M., Cascio, D., Cabelli, D. E., and Valentine, J. Selverston (2012) Six-coordinate manganese(3+) in catalysis by yeast manganese superoxide dismutase. Proc Natl Acad Sci U S A. 109, 14314-9
Sheng, G., Gogakos, T., Wang, J., Zhao, H., Serganov, A., Juranek, S., Tuschl, T., Patel, D. J., and Wang, Y. (2017) Structure/cleavage-based insights into helical perturbations at bulge sites within T. thermophilus Argonaute silencing complexes. Nucleic Acids Res. 45, 9149-9163
Sheng, G., Zhao, H., Wang, J., Rao, Y., Tian, W., Swarts, D. C., van der Oost, J., Patel, D. J., and Wang, Y. (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A. 111, 652-7
Shi, K., Oakland, J. T., Kurniawan, F., Moeller, N. H., Banerjee, S., and Aihara, H. (2020) Structural basis of superinfection exclusion by bacteriophage T4 Spackle. Commun Biol. 3, 691
Shi, K., Carpenter, M. A., Banerjee, S., Shaban, N. M., Kurahashi, K., Salamango, D. J., McCann, J. L., Starrett, G. J., Duffy, J. V., Demir, Ö., Amaro, R. E., Harki, D. A., Harris, R. S., and Aihara, H. (2017) Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. 24, 131-139
Shi, K., Bagchi, S., Bickel, J., Esfahani, S. H., Yin, L., Cheng, T., Karamyan, V. T., and Aihara, H. (2024) Structural basis of divergent substrate recognition and inhibition of human neurolysin. Sci Rep. 14, 18420
Shi, K., Kurahashi, K., Gao, R., Tsutakawa, S. E., Tainer, J. A., Pommier, Y., and Aihara, H. (2012) Structural basis for recognition of 5'-phosphotyrosine adducts by Tdp2. Nat Struct Mol Biol. 19, 1372-7
Shi, K., Moeller, N. H., Banerjee, S., McCann, J. L., Carpenter, M. A., Yin, L., Moorthy, R., Orellana, K., Harki, D. A., Harris, R. S., and Aihara, H. (2021) Structural basis for recognition of distinct deaminated DNA lesions by endonuclease Q. Proc Natl Acad Sci U S A. 10.1073/pnas.2021120118
Shnitsar, V., Li, J., Li, X., Calmettes, C., Basu, A., Casey, J. R., Moraes, T. F., and Reithmeier, R. A. F. (2013) A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem. 288, 33848-60
Shrivastava, T., Mino, K., Babayeva, N. D., Baranovskaya, O. I., Rizzino, A., and Tahirov, T. H. (2014) Structural basis of Ets1 activation by Runx1. Leukemia. 28, 2040-8
Siegel, S. D., Amer, B. R., Wu, C., Sawaya, M. R., Gosschalk, J. E., Clubb, R. T., and Ton-That, H. (2019) Structure and Mechanism of LcpA, a Phosphotransferase That Mediates Glycosylation of a Gram-Positive Bacterial Cell Wall-Anchored Protein. MBio. 10.1128/mBio.01580-18
Sievers, S. A., Karanicolas, J., Chang, H. W., Zhao, A., Jiang, L., Zirafi, O., Stevens, J. T., Münch, J., Baker, D., and Eisenberg, D. (2011) Structure-based design of non-natural amino-acid inhibitors of amyloid fibril formation. Nature. 475, 96-100

Pages