Found 930 results
Filters: First Letter Of Title is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Chaplain, C., Fritschi, C. J., Anang, S., Gong, Z., Richard, J., Bourassa, C., Liang, S., Mohammadi, M., Park, J., Finzi, A., Madani, N., Sodroski, J. G., Abrams, C. F., Hendrickson, W. A., and Smith, A. B. (2023) Structural and Functional Characterization of Indane-Core CD4-Mimetic Compounds Substituted with Heterocyclic Amines. ACS Med Chem Lett. 14, 51-58
Chang, Y., Horton, J. R., Bedford, M. T., Zhang, X., and Cheng, X. (2011) Structural insights for MPP8 chromodomain interaction with histone H3 lysine 9: potential effect of phosphorylation on methyl-lysine binding. J Mol Biol. 408, 807-14
Chan, R. T., Peters, J. K., Robart, A. R., Wiryaman, T., Rajashankar, K. R., and Toor, N. (2018) Structural basis for the second step of group II intron splicing. Nat Commun. 9, 4676
Cavalier, M. C., Ansari, M. Imran, Pierce, A. D., Wilder, P. T., McKnight, L. E., E Raman, P., Neau, D. B., Bezawada, P., Alasady, M. J., Charpentier, T. H., Varney, K. M., Toth, E. A., MacKerell, A. D., Coop, A., and Weber, D. J. (2016) Small Molecule Inhibitors of Ca(2+)-S100B Reveal Two Protein Conformations. J Med Chem. 59, 592-608
Carlson, A. S., Cui, H., Divakaran, A., Johnson, J. A., Brunner, R. M., Pomerantz, W. C. K., and Topczewski, J. J. (2019) Systematically Mitigating the p38α Activity of Triazole-based BET Inhibitors.. ACS Med Chem Lett. 10, 1296-1301
Cappadocia, L., Pichler, A., and Lima, C. D. (2015) Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol. 22, 968-75
Capili, A. D., and Lima, C. D. (2007) Structure and analysis of a complex between SUMO and Ubc9 illustrates features of a conserved E2-Ubl interaction. J Mol Biol. 369, 608-18
Cao, Z., and Bowie, J. U. (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. Proc Natl Acad Sci U S A. 109, 8121-6
Cao, H., Pauff, J. M., and Hille, R. (2010) Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid. J Biol Chem. 285, 28044-53
Calmettes, C., Alcantara, J., Yu, R. - H., Schryvers, A. B., and Moraes, T. F. (2012) The structural basis of transferrin sequestration by transferrin-binding protein B. Nat Struct Mol Biol. 19, 358-60
Callahan, S. J., Luyten, Y. A., Gupta, Y. K., Wilson, G. G., Roberts, R. J., Morgan, R. D., and Aggarwal, A. K. (2016) Structure of Type IIL Restriction-Modification Enzyme MmeI in Complex with DNA Has Implications for Engineering New Specificities. PLoS Biol. 14, e1002442
Cai, Z., Chehab, N. H., and Pavletich, N. P. (2009) Structure and activation mechanism of the CHK2 DNA damage checkpoint kinase. Mol Cell. 35, 818-29
Cai, Y., Deng, Y., Horenkamp, F., Reinisch, K. M., and Burd, C. G. (2014) Sac1-Vps74 structure reveals a mechanism to terminate phosphoinositide signaling in the Golgi apparatus. J Cell Biol. 206, 485-91
Cai, Y., Chin, H. F., Lazarova, D., Menon, S., Fu, C., Cai, H., Sclafani, A., Rodgers, D. W., De La Cruz, E. M., Ferro-Novick, S., and Reinisch, K. M. (2008) The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell. 133, 1202-13
Cabarca, S., de Souza, M. Frazão, de Oliveira, A. Albert, Muniz, G. S. Vignoli, M Lamy, T., Reis, C. Vinicius D., Takarada, J., Effer, B., Souza, L. Santos, de la Torre, L. Iriarte, Couñago, R., Oliveira, C. Luis Pinto, and Balan, A. (2021) Structure of the PknF and conformational changes induced in forkhead-associated regulatory domains. Curr Res Struct Biol. 3, 165-178
Buzovetsky, O., Tang, C., Knecht, K. M., Antonucci, J. M., Wu, L., Ji, X., and Xiong, Y. (2018) The SAM domain of mouse SAMHD1 is critical for its activation and regulation. Nat Commun. 9, 411
Butler, E. B., Xiong, Y., Wang, J., and Strobel, S. A. (2011) Structural basis of cooperative ligand binding by the glycine riboswitch. Chem Biol. 18, 293-8
Busscher, B. M., Befekadu, H. B., Liu, Z., and Xiao, T. Sam (2023) SARS-CoV-2 ORF3a-Mediated NF-κB Activation Is Not Dependent on TRAF-Binding Sequence.. Viruses. 10.3390/v15112229
Bu, W., Settembre, E. C., Kouni, M. H. el, and Ealick, S. E. (2005) Structural basis for inhibition of Escherichia coli uridine phosphorylase by 5-substituted acyclouridines. Acta Crystallogr D Biol Crystallogr. 61, 863-72
Brugger, C., Schwartz, J., Novick, S., Tong, S., Hoskins, J., Majdalani, N., Kim, R., Filipovski, M., Wickner, S., Gottesman, S., Griffin, P., and Deaconescu, A. M. (2023) Structure of Phosphorylated-like RssB, the Adaptor Delivering σ to the ClpXP Proteolytic Machinery, Reveals an Interface Switch for Activation.. J Biol Chem. 10.1016/j.jbc.2023.105440
Brown, B. L., Kardon, J. R., Sauer, R. T., and Baker, T. A. (2018) Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme. Structure. 10.1016/j.str.2018.02.012
Brown, J. A., Bulkley, D., Wang, J., Valenstein, M. L., Yario, T. A., Steitz, T. A., and Steitz, J. A. (2014) Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. 21, 633-40
Brown, K. L., Banerjee, S., Feigley, A., Abe, H., Blackwell, T. S., Pozzi, A., Hudson, B. G., and Zent, R. (2018) Salt-bridge modulates differential calcium-mediated ligand binding to integrin α1- and α2-I domains.. Sci Rep. 8, 2916
Broussard, T. C., Pakhomova, S., Neau, D. B., Bonnot, R., and Waldrop, G. L. (2015) Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase. Biochemistry. 54, 3860-70
Brohawn, S. G., Leksa, N. C., Spear, E. D., Rajashankar, K. R., and Schwartz, T. U. (2008) Structural evidence for common ancestry of the nuclear pore complex and vesicle coats. Science. 322, 1369-73