Publications

Found 1494 results
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Kruidenier, L., Chung, C. -wa, Cheng, Z., Liddle, J., Che, K. H., Joberty, G., Bantscheff, M., Bountra, C., Bridges, A., Diallo, H., Eberhard, D., Hutchinson, S., Jones, E., Katso, R., Leveridge, M., Mander, P. K., Mosley, J., Ramirez-Molina, C., Rowland, P., Schofield, C. J., Sheppard, R. J., Smith, J. E., Swales, C., Tanner, R., Thomas, P., Tumber, A., Drewes, G., Oppermann, U., Patel, D. J., Lee, K., and Wilson, D. M. (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 488, 404-8
Kruidenier, L., Chung, C. -wa, Cheng, Z., Liddle, J., Che, K. H., Joberty, G., Bantscheff, M., Bountra, C., Bridges, A., Diallo, H., Eberhard, D., Hutchinson, S., Jones, E., Katso, R., Leveridge, M., Mander, P. K., Mosley, J., Ramirez-Molina, C., Rowland, P., Schofield, C. J., Sheppard, R. J., Smith, J. E., Swales, C., Tanner, R., Thomas, P., Tumber, A., Drewes, G., Oppermann, U., Patel, D. J., Lee, K., and Wilson, D. M. (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 488, 404-8
Kruidenier, L., Chung, C. -wa, Cheng, Z., Liddle, J., Che, K. H., Joberty, G., Bantscheff, M., Bountra, C., Bridges, A., Diallo, H., Eberhard, D., Hutchinson, S., Jones, E., Katso, R., Leveridge, M., Mander, P. K., Mosley, J., Ramirez-Molina, C., Rowland, P., Schofield, C. J., Sheppard, R. J., Smith, J. E., Swales, C., Tanner, R., Thomas, P., Tumber, A., Drewes, G., Oppermann, U., Patel, D. J., Lee, K., and Wilson, D. M. (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature. 488, 404-8
Chowdhury, C., Chun, S., Pang, A., Sawaya, M. R., Sinha, S., Yeates, T. O., and Bobik, T. A. (2015) Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Proc Natl Acad Sci U S A. 112, 2990-5
Chowdhury, C., Chun, S., Pang, A., Sawaya, M. R., Sinha, S., Yeates, T. O., and Bobik, T. A. (2015) Selective molecular transport through the protein shell of a bacterial microcompartment organelle. Proc Natl Acad Sci U S A. 112, 2990-5
Pomerantz, W. Charles Kr, Cui, H., Divakaran, A., Pandey, A. K., Johnson, J. A., Zahid, H., Hoell, Z. J., Ellingson, M. O., Shi, K., Aihara, H., and Harki, D. A. (2020) Selective N-terminal BRD4 bromodomain inhibitors by targeting non-conserved residues and structured water displacement. Angew Chem Int Ed Engl. 10.1002/anie.202008625
Coleman, J. A., Yang, D., Zhao, Z., Wen, P. - C., Yoshioka, C., Tajkhorshid, E., and Gouaux, E. (2019) Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport. Nature. 569, 141-145
Chau, J. E., Vish, K. J., Boggon, T. J., and Stiegler, A. L. (2022) SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat Commun. 13, 4788
Stella, S., Cascio, D., and Johnson, R. C. (2010) The shape of the DNA minor groove directs binding by the DNA-bending protein Fis. Genes Dev. 24, 814-26
Chen, W. - H., Hajduczki, A., Martinez, E. J., Bai, H., Matz, H., Hill, T. M., Lewitus, E., Chang, W. C., Dawit, L., Peterson, C. E., Rees, P. A., Ajayi, A. B., Golub, E. S., Swafford, I., Dussupt, V., David, S., Mayer, S. V., Soman, S., Kuklis, C., Corbitt, C., King, J., Choe, M., Sankhala, R. S., Thomas, P. V., Zemil, M., Wieczorek, L., Hart, T., Duso, D., Kummer, L., Yan, L., Sterling, S. L., Laing, E. D., Broder, C. C., Williams, J. K., Davidson, E., Doranz, B. J., Krebs, S. J., Polonis, V. R., Paquin-Proulx, D., Rolland, M., Reiley, W. W., Gromowski, G. D., Modjarrad, K., Dooley, H., and M Joyce, G. (2023) Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity. Nat Commun. 14, 580
Chen, W. - H., Hajduczki, A., Martinez, E. J., Bai, H., Matz, H., Hill, T. M., Lewitus, E., Chang, W. C., Dawit, L., Peterson, C. E., Rees, P. A., Ajayi, A. B., Golub, E. S., Swafford, I., Dussupt, V., David, S., Mayer, S. V., Soman, S., Kuklis, C., Corbitt, C., King, J., Choe, M., Sankhala, R. S., Thomas, P. V., Zemil, M., Wieczorek, L., Hart, T., Duso, D., Kummer, L., Yan, L., Sterling, S. L., Laing, E. D., Broder, C. C., Williams, J. K., Davidson, E., Doranz, B. J., Krebs, S. J., Polonis, V. R., Paquin-Proulx, D., Rolland, M., Reiley, W. W., Gromowski, G. D., Modjarrad, K., Dooley, H., and M Joyce, G. (2023) Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity. Nat Commun. 14, 580
Chen, W. - H., Hajduczki, A., Martinez, E. J., Bai, H., Matz, H., Hill, T. M., Lewitus, E., Chang, W. C., Dawit, L., Peterson, C. E., Rees, P. A., Ajayi, A. B., Golub, E. S., Swafford, I., Dussupt, V., David, S., Mayer, S. V., Soman, S., Kuklis, C., Corbitt, C., King, J., Choe, M., Sankhala, R. S., Thomas, P. V., Zemil, M., Wieczorek, L., Hart, T., Duso, D., Kummer, L., Yan, L., Sterling, S. L., Laing, E. D., Broder, C. C., Williams, J. K., Davidson, E., Doranz, B. J., Krebs, S. J., Polonis, V. R., Paquin-Proulx, D., Rolland, M., Reiley, W. W., Gromowski, G. D., Modjarrad, K., Dooley, H., and M Joyce, G. (2023) Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity. Nat Commun. 14, 580
Chen, W. - H., Hajduczki, A., Martinez, E. J., Bai, H., Matz, H., Hill, T. M., Lewitus, E., Chang, W. C., Dawit, L., Peterson, C. E., Rees, P. A., Ajayi, A. B., Golub, E. S., Swafford, I., Dussupt, V., David, S., Mayer, S. V., Soman, S., Kuklis, C., Corbitt, C., King, J., Choe, M., Sankhala, R. S., Thomas, P. V., Zemil, M., Wieczorek, L., Hart, T., Duso, D., Kummer, L., Yan, L., Sterling, S. L., Laing, E. D., Broder, C. C., Williams, J. K., Davidson, E., Doranz, B. J., Krebs, S. J., Polonis, V. R., Paquin-Proulx, D., Rolland, M., Reiley, W. W., Gromowski, G. D., Modjarrad, K., Dooley, H., and M Joyce, G. (2023) Shark nanobodies with potent SARS-CoV-2 neutralizing activity and broad sarbecovirus reactivity. Nat Commun. 14, 580
Cao, Z., and Bowie, J. U. (2012) Shifting hydrogen bonds may produce flexible transmembrane helices. Proc Natl Acad Sci U S A. 109, 8121-6
Macdonald, R., Cascio, D., Collazo, M. J., Phillips, M., and Clubb, R. T. (2018) The Shr protein captures human hemoglobin using two structurally unique binding domains. J Biol Chem. 293, 18365-18377
Macdonald, R., Cascio, D., Collazo, M. J., Phillips, M., and Clubb, R. T. (2018) The Shr protein captures human hemoglobin using two structurally unique binding domains. J Biol Chem. 293, 18365-18377
Macdonald, R., Cascio, D., Collazo, M. J., Phillips, M., and Clubb, R. T. (2018) The Shr protein captures human hemoglobin using two structurally unique binding domains. J Biol Chem. 293, 18365-18377
Macdonald, R., Mahoney, B. J., Soule, J., Goring, A. K., Ford, J., Loo, J. A., Cascio, D., and Clubb, R. T. (2023) The Shr receptor from uses a cap and release mechanism to acquire heme-iron from human hemoglobin. Proc Natl Acad Sci U S A. 120, e2211939120
Macdonald, R., Mahoney, B. J., Soule, J., Goring, A. K., Ford, J., Loo, J. A., Cascio, D., and Clubb, R. T. (2023) The Shr receptor from uses a cap and release mechanism to acquire heme-iron from human hemoglobin. Proc Natl Acad Sci U S A. 120, e2211939120
To, C., Jang, J., Chen, T., Park, E., Mushajiang, M., De Clercq, D. J. H., Xu, M., Wang, S., Cameron, M. D., Heppner, D. E., Shin, B. Hee, Gero, T. W., Yang, A., Dahlberg, S. E., Wong, K. - K., Eck, M. J., Gray, N. S., and Jänne, P. A. (2019) Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discov. 9, 926-943
To, C., Jang, J., Chen, T., Park, E., Mushajiang, M., De Clercq, D. J. H., Xu, M., Wang, S., Cameron, M. D., Heppner, D. E., Shin, B. Hee, Gero, T. W., Yang, A., Dahlberg, S. E., Wong, K. - K., Eck, M. J., Gray, N. S., and Jänne, P. A. (2019) Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discov. 9, 926-943
Schmidt, F. I., Lu, A., Chen, J. W., Ruan, J., Tang, C., Wu, H., and Ploegh, H. L. (2016) A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med. 213, 771-90
Czajka, T. F., Vance, D. J., Davis, S., Rudolph, M. J., and Mantis, N. J. (2022) Single-domain antibodies neutralize ricin toxin intracellularly by blocking access to ribosomal P-stalk proteins. J Biol Chem. 298, 101742
Ma, J. K., Carrell, C. J., F Mathews, S., and Davidson, V. L. (2006) Site-directed mutagenesis of proline 52 to glycine in amicyanin converts a true electron transfer reaction into one that is conformationally gated. Biochemistry. 45, 8284-93
Merz, G. E., Borbat, P. P., Muok, A. R., Srivastava, M., Bunck, D. N., Freed, J. H., and Crane, B. R. (2018) Site-Specific Incorporation of a Cu Spin-Label Into Proteins for Measuring Distances by Pulsed Dipolar ESR Spectroscopy. J Phys Chem B. 10.1021/acs.jpcb.8b05619

Pages