Publications

Found 1535 results
Filters: First Letter Of Last Name is B  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
R
Roark, R. S., Li, H., Williams, W. B., Chug, H., Mason, R. D., Gorman, J., Wang, S., Lee, F. - H., Rando, J., Bonsignori, M., Hwang, K. - K., Saunders, K. O., Wiehe, K., M Moody, A., Hraber, P. T., Wagh, K., Giorgi, E. E., Russell, R. M., Bibollet-Ruche, F., Liu, W., Connell, J., Smith, A. G., DeVoto, J., Murphy, A. I., Smith, J., Ding, W., Zhao, C., Chohan, N., Okumura, M., Rosario, C., Ding, Y., Lindemuth, E., Bauer, A. M., Bar, K. J., Ambrozak, D., Chao, C. W., Chuang, G. - Y., Geng, H., Lin, B. C., Louder, M. K., Nguyen, R., Zhang, B., Lewis, M. G., Raymond, D., Doria-Rose, N. A., Schramm, C. A., Douek, D. C., Roederer, M., Kepler, T. B., Kelsoe, G., Mascola, J. R., Kwong, P. D., Korber, B. T., Harrison, S. C., Haynes, B. F., Hahn, B. H., and Shaw, G. M. (2020) Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science. 10.1126/science.abd2638
Roark, R. S., Li, H., Williams, W. B., Chug, H., Mason, R. D., Gorman, J., Wang, S., Lee, F. - H., Rando, J., Bonsignori, M., Hwang, K. - K., Saunders, K. O., Wiehe, K., M Moody, A., Hraber, P. T., Wagh, K., Giorgi, E. E., Russell, R. M., Bibollet-Ruche, F., Liu, W., Connell, J., Smith, A. G., DeVoto, J., Murphy, A. I., Smith, J., Ding, W., Zhao, C., Chohan, N., Okumura, M., Rosario, C., Ding, Y., Lindemuth, E., Bauer, A. M., Bar, K. J., Ambrozak, D., Chao, C. W., Chuang, G. - Y., Geng, H., Lin, B. C., Louder, M. K., Nguyen, R., Zhang, B., Lewis, M. G., Raymond, D., Doria-Rose, N. A., Schramm, C. A., Douek, D. C., Roederer, M., Kepler, T. B., Kelsoe, G., Mascola, J. R., Kwong, P. D., Korber, B. T., Harrison, S. C., Haynes, B. F., Hahn, B. H., and Shaw, G. M. (2020) Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science. 10.1126/science.abd2638
Roark, R. S., Li, H., Williams, W. B., Chug, H., Mason, R. D., Gorman, J., Wang, S., Lee, F. - H., Rando, J., Bonsignori, M., Hwang, K. - K., Saunders, K. O., Wiehe, K., M Moody, A., Hraber, P. T., Wagh, K., Giorgi, E. E., Russell, R. M., Bibollet-Ruche, F., Liu, W., Connell, J., Smith, A. G., DeVoto, J., Murphy, A. I., Smith, J., Ding, W., Zhao, C., Chohan, N., Okumura, M., Rosario, C., Ding, Y., Lindemuth, E., Bauer, A. M., Bar, K. J., Ambrozak, D., Chao, C. W., Chuang, G. - Y., Geng, H., Lin, B. C., Louder, M. K., Nguyen, R., Zhang, B., Lewis, M. G., Raymond, D., Doria-Rose, N. A., Schramm, C. A., Douek, D. C., Roederer, M., Kepler, T. B., Kelsoe, G., Mascola, J. R., Kwong, P. D., Korber, B. T., Harrison, S. C., Haynes, B. F., Hahn, B. H., and Shaw, G. M. (2020) Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science. 10.1126/science.abd2638
Békés, M., van Noort, G. J. van der, Ekkebus, R., Ovaa, H., Huang, T. T., and Lima, C. D. (2016) Recognition of Lys48-Linked Di-ubiquitin and Deubiquitinating Activities of the SARS Coronavirus Papain-like Protease. Mol Cell. 62, 572-85
Chetty, A. K., Sexton, J. A., Ha, B. Hak, Turk, B. E., and Boggon, T. J. (2020) Recognition of physiological phosphorylation sites by p21-activated kinase 4. J Struct Biol. 211, 107553
Chatterjee, A., Li, Y., Zhang, Y., Grove, T. L., Lee, M., Krebs, C., Booker, S. J., Begley, T. P., and Ealick, S. E. (2008) Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat Chem Biol. 4, 758-65
Chatterjee, A., Li, Y., Zhang, Y., Grove, T. L., Lee, M., Krebs, C., Booker, S. J., Begley, T. P., and Ealick, S. E. (2008) Reconstitution of ThiC in thiamine pyrimidine biosynthesis expands the radical SAM superfamily. Nat Chem Biol. 4, 758-65
Johnson, C. W., Seo, H. - S., Terrell, E. M., Yang, M. - H., KleinJan, F., Gebregiworgis, T., Gasmi-Seabrook, G. M. C., Geffken, E. A., Lakhani, J., Song, K., Bashyal, P., Popow, O., Paulo, J. A., Liu, A., Mattos, C., Marshall, C. B., Ikura, M., Morrison, D. K., Dhe-Paganon, S., and Haigis, K. M. (2022) Regulation of GTPase function by autophosphorylation. Mol Cell. 82, 950-968.e14
Kirouac, K. N., Basu, A. K., and Ling, H. (2013) Replication of a carcinogenic nitropyrene DNA lesion by human Y-family DNA polymerase. Nucleic Acids Res. 41, 2060-71
Liebschner, D., Dauter, M., Brzuszkiewicz, A., and Dauter, Z. (2013) On the reproducibility of protein crystal structures: five atomic resolution structures of trypsin. Acta Crystallogr D Biol Crystallogr. 69, 1447-62
Uervirojnangkoorn, M., Lyubimov, A. Y., Zhou, Q., Weis, W. I., and Brunger, A. T. (2019) Resolving indexing ambiguities in X-ray free-electron laser diffraction patterns. Acta Crystallogr D Struct Biol. 75, 234-241
Lee, S. - A., Yang, K. Jian Zhang, Brun, P. - J., Silvaroli, J. A., Yuen, J. J., Shmarakov, I., Jiang, H., Feranil, J. B., Li, X., Lackey, A. I., Krężel, W., Leibel, R. L., Libien, J., Storch, J., Golczak, M., and Blaner, W. S. (2020) Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. Sci Adv. 6, eaay8937
Lee, S. - A., Yang, K. Jian Zhang, Brun, P. - J., Silvaroli, J. A., Yuen, J. J., Shmarakov, I., Jiang, H., Feranil, J. B., Li, X., Lackey, A. I., Krężel, W., Leibel, R. L., Libien, J., Storch, J., Golczak, M., and Blaner, W. S. (2020) Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. Sci Adv. 6, eaay8937
Plau, J., Golczak, M., Paik, J., Calderon, R. M., and Blaner, W. S. (2022) Retinol-binding protein 2 (RBP2): More than just dietary retinoid uptake. Biochim Biophys Acta Mol Cell Biol Lipids. 1867, 159179
Sikowitz, M. D., Cooper, L. E., Begley, T. P., Kaminski, P. Alexandre, and Ealick, S. E. (2013) Reversal of the substrate specificity of CMP N-glycosidase to dCMP. Biochemistry. 52, 4037-47
Bulkley, D., C Innis, A., Blaha, G., and Steitz, T. A. (2010) Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci U S A. 107, 17158-63
Bulkley, D., C Innis, A., Blaha, G., and Steitz, T. A. (2010) Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci U S A. 107, 17158-63
Lopez, J., Bonsor, D. A., Sale, M. J., Urisman, A., Mehalko, J. L., Cabanski-Dunning, M., Castel, P., Simanshu, D. K., and McCormick, F. (2023) The Ribosomal S6 Kinase 2 (RSK2)-SPRED2 complex regulates phosphorylation of RSK substrates and MAPK signaling. J Biol Chem. 10.1016/j.jbc.2023.104789
Peek, J., Lilic, M., Montiel, D., Milshteyn, A., Woodworth, I., Biggins, J. B., Ternei, M. A., Calle, P. Y., Danziger, M., Warrier, T., Saito, K., Braffman, N., Fay, A., Glickman, M. S., Darst, S. A., Campbell, E. A., and Brady, S. F. (2018) Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat Commun. 9, 4147
Peek, J., Lilic, M., Montiel, D., Milshteyn, A., Woodworth, I., Biggins, J. B., Ternei, M. A., Calle, P. Y., Danziger, M., Warrier, T., Saito, K., Braffman, N., Fay, A., Glickman, M. S., Darst, S. A., Campbell, E. A., and Brady, S. F. (2018) Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat Commun. 9, 4147
Peek, J., Lilic, M., Montiel, D., Milshteyn, A., Woodworth, I., Biggins, J. B., Ternei, M. A., Calle, P. Y., Danziger, M., Warrier, T., Saito, K., Braffman, N., Fay, A., Glickman, M. S., Darst, S. A., Campbell, E. A., and Brady, S. F. (2018) Rifamycin congeners kanglemycins are active against rifampicin-resistant bacteria via a distinct mechanism. Nat Commun. 9, 4147
Yudina, Z., Roa, A., Johnson, R., Biris, N., Vieira, D. A. de Souza, Tsiperson, V., Reszka, N., Taylor, A. B., P Hart, J., Demeler, B., Diaz-Griffero, F., and Ivanov, D. N. (2015) RING Dimerization Links Higher-Order Assembly of TRIM5α to Synthesis of K63-Linked Polyubiquitin.. Cell Rep. 12, 788-97
Brown, N. G., VanderLinden, R., Watson, E. R., Qiao, R., Grace, C. R. R., Yamaguchi, M., Weissmann, F., Frye, J. J., Dube, P., Cho, S. Ei, Actis, M. L., Rodrigues, P., Fujii, N., Peters, J. - M., Stark, H., and Schulman, B. A. (2015) RING E3 mechanism for ubiquitin ligation to a disordered substrate visualized for human anaphase-promoting complex. Proc Natl Acad Sci U S A. 112, 5272-9
Shanmugam, G., Minko, I. G., Banerjee, S., Christov, P. P., Kozekov, I. D., Rizzo, C. J., R Lloyd, S., Egli, M., and Stone, M. P. (2013) Ring-opening of the γ-OH-PdG adduct promotes error-free bypass by the Sulfolobus solfataricus DNA polymerase Dpo4.. Chem Res Toxicol. 26, 1348-60
Hazari, A., Sawaya, M. R., Vlahakis, N., Johnstone, T. C., Boyer, D., Rodriguez, J., Eisenberg, D., and Raskatov, J. A. (2022) The rippled β-sheet layer configuration-a novel supramolecular architecture based on predictions by Pauling and Corey.. Chem Sci. 13, 8947-8952

Pages