Publications

Found 1487 results
Filters: First Letter Of Last Name is C  [Clear All Filters]
Journal Article
Dufrisne, M. Belcher, Petrou, V. I., Clarke, O. B., and Mancia, F. (2017) Structural basis for catalysis at the membrane-water interface. Biochim Biophys Acta Mol Cell Biol Lipids. 1862, 1368-1385
Sciara, G., Clarke, O. B., Tomasek, D., Kloss, B., Tabuso, S., Byfield, R., Cohn, R., Banerjee, S., Rajashankar, K. R., Slavkovic, V., Graziano, J. H., Shapiro, L., and Mancia, F. (2014) Structural basis for catalysis in a CDP-alcohol phosphotransferase. Nat Commun. 5, 4068
Sciara, G., Clarke, O. B., Tomasek, D., Kloss, B., Tabuso, S., Byfield, R., Cohn, R., Banerjee, S., Rajashankar, K. R., Slavkovic, V., Graziano, J. H., Shapiro, L., and Mancia, F. (2014) Structural basis for catalysis in a CDP-alcohol phosphotransferase. Nat Commun. 5, 4068
Cappadocia, L., Pichler, A., and Lima, C. D. (2015) Structural basis for catalytic activation by the human ZNF451 SUMO E3 ligase. Nat Struct Mol Biol. 22, 968-75
Yang, X., Chen, G., Weng, N. - P., and Mariuzza, R. A. (2017) Structural basis for clonal diversity of the human T-cell response to a dominant influenza virus epitope. J Biol Chem. 292, 18618-18627
Zhou, L., Hinerman, J. M., Blaszczyk, M., Miller, J. L. C., Conrady, D. G., Barrow, A. D., Chirgadze, D. Y., Bihan, D., Farndale, R. W., and Herr, A. B. (2016) Structural basis for collagen recognition by the immune receptor OSCAR. Blood. 127, 529-37
Zhou, L., Hinerman, J. M., Blaszczyk, M., Miller, J. L. C., Conrady, D. G., Barrow, A. D., Chirgadze, D. Y., Bihan, D., Farndale, R. W., and Herr, A. B. (2016) Structural basis for collagen recognition by the immune receptor OSCAR. Blood. 127, 529-37
Su, M., Gao, F., Yuan, Q., Mao, Y., Li, D. - L., Guo, Y., Yang, C., Wang, X. - H., Bruni, R., Kloss, B., Zhao, H., Zeng, Y., Ben Zhang, F. -, Marks, A. R., Hendrickson, W. A., and Chen, Y. - H. (2017) Structural basis for conductance through TRIC cation channels. Nat Commun. 8, 15103
Nabel, K. G., Clark, S. A., Shankar, S., Pan, J., Clark, L. E., Yang, P., Coscia, A., McKay, L. G. A., Varnum, H. H., Brusic, V., Tolan, N. V., Zhou, G., Desjardins, M., Turbett, S. E., Kanjilal, S., Sherman, A. C., Dighe, A., LaRocque, R. C., Ryan, E. T., Tylek, C., Cohen-Solal, J. F., Darcy, A. T., Tavella, D., Clabbers, A., Fan, Y., Griffiths, A., Correia, I. R., Seagal, J., Baden, L. R., Charles, R. C., and Abraham, J. (2021) Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science
Nabel, K. G., Clark, S. A., Shankar, S., Pan, J., Clark, L. E., Yang, P., Coscia, A., McKay, L. G. A., Varnum, H. H., Brusic, V., Tolan, N. V., Zhou, G., Desjardins, M., Turbett, S. E., Kanjilal, S., Sherman, A. C., Dighe, A., LaRocque, R. C., Ryan, E. T., Tylek, C., Cohen-Solal, J. F., Darcy, A. T., Tavella, D., Clabbers, A., Fan, Y., Griffiths, A., Correia, I. R., Seagal, J., Baden, L. R., Charles, R. C., and Abraham, J. (2021) Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science
Nabel, K. G., Clark, S. A., Shankar, S., Pan, J., Clark, L. E., Yang, P., Coscia, A., McKay, L. G. A., Varnum, H. H., Brusic, V., Tolan, N. V., Zhou, G., Desjardins, M., Turbett, S. E., Kanjilal, S., Sherman, A. C., Dighe, A., LaRocque, R. C., Ryan, E. T., Tylek, C., Cohen-Solal, J. F., Darcy, A. T., Tavella, D., Clabbers, A., Fan, Y., Griffiths, A., Correia, I. R., Seagal, J., Baden, L. R., Charles, R. C., and Abraham, J. (2021) Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science
Nabel, K. G., Clark, S. A., Shankar, S., Pan, J., Clark, L. E., Yang, P., Coscia, A., McKay, L. G. A., Varnum, H. H., Brusic, V., Tolan, N. V., Zhou, G., Desjardins, M., Turbett, S. E., Kanjilal, S., Sherman, A. C., Dighe, A., LaRocque, R. C., Ryan, E. T., Tylek, C., Cohen-Solal, J. F., Darcy, A. T., Tavella, D., Clabbers, A., Fan, Y., Griffiths, A., Correia, I. R., Seagal, J., Baden, L. R., Charles, R. C., and Abraham, J. (2021) Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science
Nabel, K. G., Clark, S. A., Shankar, S., Pan, J., Clark, L. E., Yang, P., Coscia, A., McKay, L. G. A., Varnum, H. H., Brusic, V., Tolan, N. V., Zhou, G., Desjardins, M., Turbett, S. E., Kanjilal, S., Sherman, A. C., Dighe, A., LaRocque, R. C., Ryan, E. T., Tylek, C., Cohen-Solal, J. F., Darcy, A. T., Tavella, D., Clabbers, A., Fan, Y., Griffiths, A., Correia, I. R., Seagal, J., Baden, L. R., Charles, R. C., and Abraham, J. (2021) Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science
Nabel, K. G., Clark, S. A., Shankar, S., Pan, J., Clark, L. E., Yang, P., Coscia, A., McKay, L. G. A., Varnum, H. H., Brusic, V., Tolan, N. V., Zhou, G., Desjardins, M., Turbett, S. E., Kanjilal, S., Sherman, A. C., Dighe, A., LaRocque, R. C., Ryan, E. T., Tylek, C., Cohen-Solal, J. F., Darcy, A. T., Tavella, D., Clabbers, A., Fan, Y., Griffiths, A., Correia, I. R., Seagal, J., Baden, L. R., Charles, R. C., and Abraham, J. (2021) Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science
Nabel, K. G., Clark, S. A., Shankar, S., Pan, J., Clark, L. E., Yang, P., Coscia, A., McKay, L. G. A., Varnum, H. H., Brusic, V., Tolan, N. V., Zhou, G., Desjardins, M., Turbett, S. E., Kanjilal, S., Sherman, A. C., Dighe, A., LaRocque, R. C., Ryan, E. T., Tylek, C., Cohen-Solal, J. F., Darcy, A. T., Tavella, D., Clabbers, A., Fan, Y., Griffiths, A., Correia, I. R., Seagal, J., Baden, L. R., Charles, R. C., and Abraham, J. (2021) Structural basis for continued antibody evasion by the SARS-CoV-2 receptor binding domain. Science
Prew, M. S., Camara, C. M., Botzanowski, T., Moroco, J. A., Bloch, N. B., Levy, H. R., Seo, H. - S., Dhe-Paganon, S., Bird, G. H., Herce, H. D., Gygi, M. A., Escudero, S., Wales, T. E., Engen, J. R., and Walensky, L. D. (2022) Structural basis for defective membrane targeting of mutant enzyme in human VLCAD deficiency. Nat Commun. 13, 3669
Torrens-Spence, M. P., Chiang, Y. - C., Smith, T., Vicent, M. A., Wang, Y., and Weng, J. - K. (2020) Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins. Proc Natl Acad Sci U S A. 10.1073/pnas.1920097117
Zhang, Z. - M., Lu, R., Wang, P., Yu, Y., Chen, D., Gao, L., Liu, S., Ji, D., Rothbart, S. B., Wang, Y., Wang, G. Greg, and Song, J. (2018) Structural basis for DNMT3A-mediated de novo DNA methylation. Nature. 554, 387-391
Wu, B., Peisley, A., Richards, C., Yao, H., Zeng, X., Lin, C., Chu, F., Walz, T., and Hur, S. (2013) Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell. 152, 276-89
Patra, A., Banerjee, S., Salyard, T. L. Johnson, Malik, C. K., Christov, P. P., Rizzo, C. J., Stone, M. P., and Egli, M. (2015) Structural Basis for Error-Free Bypass of the 5-N-Methylformamidopyrimidine-dG Lesion by Human DNA Polymerase η and Sulfolobus solfataricus P2 Polymerase IV.. J Am Chem Soc. 137, 7011-4
Jost, M., Fernández-Zapata, J., Polanco, M. Carmen, Ortiz-Guerrero, J. Manuel, Chen, P. Yang- Ting, Kang, G., Padmanabhan, S., Elías-Arnanz, M., and Drennan, C. L. (2015) Structural basis for gene regulation by a B12-dependent photoreceptor. Nature. 526, 536-41
Trachman, R. J., Demeshkina, N. A., Lau, M. W. L., Panchapakesan, S. Shyam S., C Y Jeng, S., Unrau, P. J., and Ferré-D'Amaré, A. R. (2017) Structural basis for high-affinity fluorophore binding and activation by RNA Mango. Nat Chem Biol. 13, 807-813
Horton, J. R., Upadhyay, A. K., Hashimoto, H., Zhang, X., and Cheng, X. (2011) Structural basis for human PHF2 Jumonji domain interaction with metal ions. J Mol Biol. 406, 1-8
Zhang, X., Eser, B. E., Chanani, P. K., Begley, T. P., and Ealick, S. E. (2016) Structural Basis for Iron-Mediated Sulfur Transfer in Archael and Yeast Thiazole Synthases. Biochemistry. 55, 1826-38
Saxton, R. A., Knockenhauer, K. E., Wolfson, R. L., Chantranupong, L., Pacold, M. E., Wang, T., Schwartz, T. U., and Sabatini, D. M. (2016) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science. 351, 53-8

Pages