Found 160 results
Filters: First Letter Of Title is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Klingler, C., Ashley, J., Shi, K., Stiefvater, A., Kyba, M., Sinnreich, M., Aihara, H., and Kinter, J. (2020) DNA aptamers against the DUX4 protein reveal novel therapeutic implications for FSHD. FASEB J. 34, 4573-4590
Cappadocia, L., Kochańczyk, T., and Lima, C. D. (2021) DNA asymmetry promotes SUMO modification of the single-stranded DNA-binding protein RPA. EMBO J. 10.15252/embj.2019103787
Chu, B., Zhang, D., and Paukstelis, P. J. (2019) A DNA G-quadruplex/i-motif hybrid. Nucleic Acids Res. 10.1093/nar/gkz1008
Xia, S., Wang, J., and Konigsberg, W. H. (2013) DNA mismatch synthesis complexes provide insights into base selectivity of a B family DNA polymerase. J Am Chem Soc. 135, 193-202
Wang, R., Persky, N. S., Yoo, B., Ouerfelli, O., Smogorzewska, A., Elledge, S. J., and Pavletich, N. P. (2014) DNA repair. Mechanism of DNA interstrand cross-link processing by repair nuclease FAN1. Science. 346, 1127-30
Hancock, S. P., Stella, S., Cascio, D., and Johnson, R. C. (2016) DNA Sequence Determinants Controlling Affinity, Stability and Shape of DNA Complexes Bound by the Nucleoid Protein Fis. PLoS One. 11, e0150189
Adam, S., Anteneh, H., Hornisch, M., Wagner, V., Lu, J., Radde, N. E., Bashtrykov, P., Song, J., and Jeltsch, A. (2020) DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation. Nat Commun. 11, 3723
Zhou, C., Pourmal, S., and Pavletich, N. P. (2015) Dna2 nuclease-helicase structure, mechanism and regulation by Rpa. Elife. 10.7554/eLife.09832
Chauleau, M., Jacewicz, A., and Shuman, S. (2015) DNA3'pp5'G de-capping activity of aprataxin: effect of cap nucleoside analogs and structural basis for guanosine recognition. Nucleic Acids Res. 43, 6075-83
Ryder, B. D., Boyer, D. R., Ustyantseva, E., Mendoza-Oliva, A., Kuska, M. I., Wydorski, P. M., Sawaya, M., Diamond, M. I., Eisenberg, D. S., Kampinga, H. H., and Joachimiak, L. A. (2023) DNAJB8 oligomerization is mediated by an aromatic-rich motif that is dispensable for substrate activity. bioRxiv. 10.1101/2023.03.06.531355
Ren, W., Fan, H., Grimm, S. A., Kim, J. Jin, Li, L., Guo, Y., Petell, C. James, Tan, X. - F., Zhang, Z. - M., Coan, J. P., Yin, J., Kim, D. In, Gao, L., Cai, L., Khudaverdyan, N., Çetin, B., Patel, D. J., Wang, Y., Cui, Q., Strahl, B. D., Gozani, O., Miller, K. M., O'Leary, S. E., Wade, P. A., Wang, G. Greg, and Song, J. (2021) DNMT1 reads heterochromatic H4K20me3 to reinforce LINE-1 DNA methylation. Nat Commun. 12, 2490
Bhandari, S., Biswas, S., Chaudhary, A., Dutta, S., and Suguna, K. (2019) Dodecameric structure of a small heat shock protein from Mycobacterium marinum M. Proteins. 10.1002/prot.25657
Yu, Y., Zhu, J., Huang, P. - S., Wang, J. -huai, Pullen, N., and Springer, T. A. (2013) Domain 1 of mucosal addressin cell adhesion molecule has an I1-set fold and a flexible integrin-binding loop. J Biol Chem. 288, 6284-94
Lv, Z., Yuan, L., Atkison, J. H., Aldana-Masangkay, G., Chen, Y., and Olsen, S. K. (2017) Domain alternation and active site remodeling are conserved structural features of ubiquitin E1. J Biol Chem. 292, 12089-12099
Schoeffler, A. J., May, A. P., and Berger, J. M. (2010) A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. Nucleic Acids Res. 38, 7830-44
Meisburger, S. P., Taylor, A. B., Khan, C. A., Zhang, S., Fitzpatrick, P. F., and Ando, N. (2016) Domain Movements upon Activation of Phenylalanine Hydroxylase Characterized by Crystallography and Chromatography-Coupled Small-Angle X-ray Scattering. J Am Chem Soc. 138, 6506-16
Paul, D., Chatterjee, A., Begley, T. P., and Ealick, S. E. (2010) Domain organization in Candida glabrata THI6, a bifunctional enzyme required for thiamin biosynthesis in eukaryotes. Biochemistry. 49, 9922-34
Ferreira-Cerca, S., Kiburu, I., Thomson, E., LaRonde, N., and Hurt, E. (2014) Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res. 42, 8635-47
Zhang, J., and Ferré-D'Amaré, A. R. (2014) Dramatic improvement of crystals of large RNAs by cation replacement and dehydration. Structure. 22, 1363-71
Winter, G. E., Buckley, D. L., Paulk, J., Roberts, J. M., Souza, A., Dhe-Paganon, S., and Bradner, J. E. (2015) DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 348, 1376-81
Waschbüsch, D., Purlyte, E., and Khan, A. R. (2021) Dual arginine recognition of LRRK2 phosphorylated Rab GTPases. Biophys J. 10.1016/j.bpj.2021.03.030
Du, J., Zhong, X., Bernatavichute, Y. V., Stroud, H., Feng, S., Caro, E., Vashisht, A. A., Terragni, J., Chin, H. Gyeong, Tu, A., Hetzel, J., Wohlschlegel, J. A., Pradhan, S., Patel, D. J., and Jacobsen, S. E. (2012) Dual binding of chromomethylase domains to H3K9me2-containing nucleosomes directs DNA methylation in plants. Cell. 151, 167-80
Ji, C., Kittredge, A., Hopiavuori, A., Ward, N., Chen, S., Fukuda, Y., Zhang, Y., and Yang, T. (2019) Dual Ca-dependent gates in human Bestrophin1 underlie disease-causing mechanisms of gain-of-function mutations. Commun Biol. 2, 240
Goodman, M. C., Xu, S., Rouzer, C. A., Banerjee, S., Ghebreselasie, K., Migliore, M., Piomelli, D., and Marnett, L. J. (2018) Dual cyclooxygenase-fatty acid amide hydrolase inhibitor exploits novel binding interactions in the cyclooxygenase active site. J Biol Chem. 10.1074/jbc.M117.802058
Scott, D. C., Monda, J. K., Grace, C. R. R., Duda, D. M., Kriwacki, R. W., Kurz, T., and Schulman, B. A. (2010) A dual E3 mechanism for Rub1 ligation to Cdc53. Mol Cell. 39, 784-96