Publications

Found 2819 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
W
Wong, E. V., Cao, W., Vörös, J., Merchant, M., Modis, Y., Hackney, D. D., Montpetit, B., and De La Cruz, E. M. (2016) P(I) Release Limits the Intrinsic and RNA-Stimulated ATPase Cycles of DEAD-Box Protein 5 (Dbp5). J Mol Biol. 428, 492-508
Wong, C., Fujimori, D. Galonić, Walsh, C. T., and Drennan, C. L. (2009) Structural analysis of an open active site conformation of nonheme iron halogenase CytC3. J Am Chem Soc. 131, 4872-9
Wong, Y. Liang, Anzola, J. V., Davis, R. L., Yoon, M., Motamedi, A., Kroll, A., Seo, C. P., Hsia, J. E., Kim, S. K., Mitchell, J. W., Mitchell, B. J., Desai, A., Gahman, T. C., Shiau, A. K., and Oegema, K. (2015) Cell biology. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. Science. 348, 1155-60
Wolfe, L. S., Calabrese, M. F., Nath, A., Blaho, D. V., Miranker, A. D., and Xiong, Y. (2010) Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc Natl Acad Sci U S A. 107, 16863-8
Wojcik, J., Lamontanara, A. Joaquim, Grabe, G., Koide, A., Akin, L., Gerig, B., Hantschel, O., and Koide, S. (2016) Allosteric Inhibition of Bcr-Abl Kinase by High Affinity Monobody Inhibitors Directed to the Src Homology 2 (SH2)-Kinase Interface. J Biol Chem. 291, 8836-47
Wohlever, M. L., Mateja, A., McGilvray, P. T., Day, K. J., and Keenan, R. J. (2017) Msp1 Is a Membrane Protein Dislocase for Tail-Anchored Proteins. Mol Cell. 67, 194-202.e6
Wittlinger, F., Heppner, D. E., To, C., Günther, M., Shin, B. Hee, Rana, J. K., Schmoker, A. M., Beyett, T. S., Berger, L. M., Berger, B. - T., Bauer, N., Vasta, J. D., Corona, C. R., Robers, M. B., Knapp, S., Jänne, P. A., Eck, M. J., and Laufer, S. A. (2021) Design of a "Two-in-One" Mutant-Selective Epidermal Growth Factor Receptor Inhibitor That Spans the Orthosteric and Allosteric Sites. J Med Chem. 10.1021/acs.jmedchem.1c00848
Wittlinger, F., Ogboo, B. C., Shevchenko, E., Damghani, T., Pham, C. D., Schaeffner, I. K., Oligny, B. T., Chitnis, S. P., Beyett, T. S., Rasch, A., Buckley, B., Urul, D. A., Shaurova, T., May, E. W., Schaefer, E. M., Eck, M. J., Hershberger, P. A., Poso, A., Laufer, S. A., and Heppner, D. E. (2024) Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors. Commun Chem. 7, 38
Wittenborn, E. C., Cohen, S. E., Merrouch, M., Léger, C., Fourmond, V., Dementin, S., and Drennan, C. L. (2019) Structural insight into metallocofactor maturation in carbon monoxide dehydrogenase. J Biol Chem. 294, 13017-13026
Wittenborn, E. C., Jost, M., Wei, Y., Stubbe, J. A., and Drennan, C. L. (2016) Structure of the Catalytic Domain of the Class I Polyhydroxybutyrate Synthase from Cupriavidus necator. J Biol Chem. 291, 25264-25277
Wittenborn, E. C. (2017) Structural Enzymology of Bacterial Carbon Fixation and Storage. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts
Wittenborn, E. C., Merrouch, M., Ueda, C., Fradale, L., Léger, C., Fourmond, V., Pandelia, M. - E., Dementin, S., and Drennan, C. L. (2018) Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase. Elife. 10.7554/eLife.39451
Wittenborn, E. C., Guendon, C., Merrouch, M., Benvenuti, M., Fourmond, V., Léger, C., Drennan, C. L., and Dementin, S. (2020) The Solvent-Exposed Fe-S D-Cluster Contributes to Oxygen-Resistance in Ni-Fe Carbon Monoxide Dehydrogenase. ACS Catal. 10, 7328-7335
Witkowski, W. A., and Hardy, J. A. (2011) A designed redox-controlled caspase. Protein Sci. 20, 1421-31
R Wiseman, L., Zhang, Y., Lee, K. P. K., Harding, H. P., Haynes, C. M., Price, J., Sicheri, F., and Ron, D. (2010) Flavonol activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. Mol Cell. 38, 291-304
Winter, J. M., Cascio, D., Dietrich, D., Sato, M., Watanabe, K., Sawaya, M. R., Vederas, J. C., and Tang, Y. (2015) Biochemical and Structural Basis for Controlling Chemical Modularity in Fungal Polyketide Biosynthesis. J Am Chem Soc. 137, 9885-93
Winter, G. E., Buckley, D. L., Paulk, J., Roberts, J. M., Souza, A., Dhe-Paganon, S., and Bradner, J. E. (2015) DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. 348, 1376-81
Wing, R. A., Bailey, S., and Steitz, T. A. (2008) Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit. J Mol Biol. 382, 859-69
Windsor, M. A., Valk, P. L., Xu, S., Banerjee, S., and Marnett, L. J. (2013) Exploring the molecular determinants of substrate-selective inhibition of cyclooxygenase-2 by lumiracoxib. Bioorg Med Chem Lett. 23, 5860-4
Windsor, M. A., Hermanson, D. J., Kingsley, P. J., Xu, S., Crews, B. C., Ho, W., Keenan, C. M., Banerjee, S., Sharkey, K. A., and Marnett, L. J. (2012) Substrate-Selective Inhibition of Cyclooxygenase-2: Development and Evaluation of Achiral Profen Probes. ACS Med Chem Lett. 3, 759-763
Wiltzius, J. J. W., Landau, M., Nelson, R., Sawaya, M. R., Apostol, M. I., Goldschmidt, L., Soriaga, A. B., Cascio, D., Rajashankar, K., and Eisenberg, D. (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol. 16, 973-8
Wiltzius, J. J. W., Sievers, S. A., Sawaya, M. R., and Eisenberg, D. (2009) Atomic structures of IAPP (amylin) fusions suggest a mechanism for fibrillation and the role of insulin in the process. Protein Sci. 18, 1521-30
Wilson, S. C., K White, I., Zhou, Q., Pfuetzner, R. A., Choi, U. B., Südhof, T. C., and Brunger, A. T. (2019) Structures of neurexophilin-neurexin complexes reveal a regulatory mechanism of alternative splicing. EMBO J. 10.15252/embj.2019101603
Williams, K. M., Qie, S., Atkison, J. H., Salazar-Arango, S., J Diehl, A., and Olsen, S. K. (2019) Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nat Commun. 10, 3296
Williams, W. B., R Meyerhoff, R., Edwards, R. J., Li, H., Manne, K., Nicely, N. I., Henderson, R., Zhou, Y., Janowska, K., Mansouri, K., Gobeil, S., Evangelous, T., Hora, B., Berry, M., A Abuahmad, Y., Sprenz, J., Deyton, M., Stalls, V., Kopp, M., Hsu, A. L., Borgnia, M. J., Stewart-Jones, G. B. E., Lee, M. S., Bronkema, N., M Moody, A., Wiehe, K., Bradley, T., S Alam, M., Parks, R. J., Foulger, A., Oguin, T., Sempowski, G. D., Bonsignori, M., LaBranche, C. C., Montefiori, D. C., Seaman, M., Santra, S., Perfect, J., Francica, J. R., Lynn, G. M., Aussedat, B., Walkowicz, W. E., Laga, R., Kelsoe, G., Saunders, K. O., Fera, D., Kwong, P. D., Seder, R. A., Bartesaghi, A., Shaw, G. M., Acharya, P., and Haynes, B. F. (2021) Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell. 184, 2955-2972.e25

Pages