Publications

Found 960 results
Filters: First Letter Of Title is S  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Benjamin, B., Goldgur, Y., Jork, N., Jessen, H. J., Schwer, B., and Shuman, S. (2022) Structures of Fission Yeast Inositol Pyrophosphate Kinase Asp1 in Ligand-Free, Substrate-Bound, and Product-Bound States. mBio. 10.1128/mbio.03087-22
Berman, A. J., Kamtekar, S., Goodman, J. L., Lázaro, J. M., de Vega, M., Blanco, L., Salas, M., and Steitz, T. A. (2007) Structures of phi29 DNA polymerase complexed with substrate: the mechanism of translocation in B-family polymerases. EMBO J. 26, 3494-505
Bertoletti, N., Chan, A. H., Schinazi, R. F., Y Yin, W., and Anderson, K. S. (2019) Structural insights into the recognition of nucleoside reverse transcriptase inhibitors by HIV-1 reverse transcriptase: First crystal structures with reverse transcriptase and the active triphosphate forms of lamivudine and emtricitabine. Protein Sci. 28, 1664-1675
Beyett, T. S., Rana, J. K., Schaeffner, I. K., Heppner, D. E., and Eck, M. J. (2024) Structural Analysis of the Macrocyclic Inhibitor BI-4020 Binding to EGFR Kinase. ChemMedChem. 19, e202300343
Bhattacharya, A., Alam, S. L., Fricke, T., Zadrozny, K., Sedzicki, J., Taylor, A. B., Demeler, B., Pornillos, O., Ganser-Pornillos, B. K., Diaz-Griffero, F., Ivanov, D. N., and Yeager, M. (2014) Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc Natl Acad Sci U S A. 111, 18625-30
Bhattacharya, S., Lou, X., Hwang, P., Rajashankar, K. R., Wang, X., Gustafsson, J. - Å., Fletterick, R. J., Jacobson, R. H., and Webb, P. (2014) Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D. Proc Natl Acad Sci U S A. 111, 9103-8
Bigalke, J. M., and Heldwein, E. E. (2015) Structural basis of membrane budding by the nuclear egress complex of herpesviruses. EMBO J. 34, 2921-36
Bilokapic, S., and Schwartz, T. U. (2013) Structural and functional studies of the 252 kDa nucleoporin ELYS reveal distinct roles for its three tethered domains. Structure. 21, 572-80
Bitto, E., Bingman, C. A., Wesenberg, G. E., McCoy, J. G., and Phillips, G. N. (2006) Structure of pyrimidine 5'-nucleotidase type 1. Insight into mechanism of action and inhibition during lead poisoning. J Biol Chem. 281, 20521-9
Blair, J. A., Rauh, D., Kung, C., Yun, C. -hong, Fan, Q. - W., Rode, H., Zhang, C., Eck, M. J., Weiss, W. A., and Shokat, K. M. (2007) Structure-guided development of affinity probes for tyrosine kinases using chemical genetics. Nat Chem Biol. 3, 229-38
Blank, P. N., Barrow, G. H., Chou, W. K. W., Duan, L., Cane, D. E., and Christianson, D. W. (2017) Substitution of Aromatic Residues with Polar Residues in the Active Site Pocket of epi-Isozizaene Synthase Leads to the Generation of New Cyclic Sesquiterpenes. Biochemistry. 10.1021/acs.biochem.7b00895
Blank, P. N., Shinsky, S. A., and Christianson, D. W. (2019) Structure of Sesquisabinene Synthase 1, a Terpenoid Cyclase That Generates a Strained [3.1.0] Bridged-Bicyclic Product. ACS Chem Biol. 10.1021/acschembio.9b00218
Blus, B. J., Hashimoto, H., Seo, H. - S., Krolak, A., and Debler, E. W. (2019) Substrate Affinity and Specificity of the ScSth1p Bromodomain Are Fine-Tuned for Versatile Histone Recognition. Structure. 27, 1460-1468.e3
Bobik, T. A., Morales, E. J., Shin, A., Cascio, D., Sawaya, M. R., Arbing, M., Yeates, T. O., and Rasche, M. E. (2014) Structure of the methanofuran/methanopterin-biosynthetic enzyme MJ1099 from Methanocaldococcus jannaschii. Acta Crystallogr F Struct Biol Commun. 70, 1472-9
Bodnar, N. O., Kim, K. H., Ji, Z., Wales, T. E., Svetlov, V., Nudler, E., Engen, J. R., Walz, T., and Rapoport, T. A. (2018) Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4. Nat Struct Mol Biol. 25, 616-622
Boehmer, T., Jeudy, S., Berke, I. C., and Schwartz, T. U. (2008) Structural and functional studies of Nup107/Nup133 interaction and its implications for the architecture of the nuclear pore complex. Mol Cell. 30, 721-31
Bogner, A. N., and Tanner, J. J. (2022) Structure-affinity relationships of reversible proline analog inhibitors targeting proline dehydrogenase. Org Biomol Chem. 10.1039/d1ob02328d
Bogner, A. N., Ji, J., and Tanner, J. J. (2022) Structure-based engineering of minimal Proline dehydrogenase domains for inhibitor discovery. Protein Eng Des Sel. 10.1093/protein/gzac016
Bogner, A. N., Stiers, K. M., McKay, C. M., Becker, D. F., and Tanner, J. J. (2021) Structural Basis for the Stereospecific Inhibition of the Dual Proline/Hydroxyproline Catabolic Enzyme ALDH4A1 by Trans-4-Hydroxy-L-Proline. Protein Sci. 10.1002/pro.4131
Bohl, T. E., Ieong, P., Lee, J. K., Lee, T., Kankanala, J., Shi, K., Demir, Ö., Kurahashi, K., Amaro, R. E., Wang, Z., and Aihara, H. (2018) The substrate-binding cap of the UDP-diacylglucosamine pyrophosphatase LpxH is highly flexible, enabling facile substrate binding and product release. J Biol Chem. 10.1074/jbc.RA118.002503
Bolla, J. Reddy, Do, S. V., Long, F., Dai, L., Su, C. - C., Lei, H. - T., Chen, X., Gerkey, J. E., Murphy, D. C., Rajashankar, K. R., Zhang, Q., and Yu, E. W. (2012) Structural and functional analysis of the transcriptional regulator Rv3066 of Mycobacterium tuberculosis. Nucleic Acids Res. 40, 9340-55
Bolon, D. N., Grant, R. A., Baker, T. A., and Sauer, R. T. (2005) Specificity versus stability in computational protein design. Proc Natl Acad Sci U S A. 102, 12724-9
Bonsignori, M., Kreider, E. F., Fera, D., R Meyerhoff, R., Bradley, T., Wiehe, K., S Alam, M., Aussedat, B., Walkowicz, W. E., Hwang, K. - K., Saunders, K. O., Zhang, R., Gladden, M. A., Monroe, A., Kumar, A., Xia, S. - M., Cooper, M., Louder, M. K., McKee, K., Bailer, R. T., Pier, B. W., Jette, C. A., Kelsoe, G., Williams, W. B., Morris, L., Kappes, J., Wagh, K., Kamanga, G., Cohen, M. S., Hraber, P. T., Montefiori, D. C., Trama, A., Liao, H. - X., Kepler, T. B., M Moody, A., Gao, F., Danishefsky, S. J., Mascola, J. R., Shaw, G. M., Hahn, B. H., Harrison, S. C., Korber, B. T., and Haynes, B. F. (2017) Staged induction of HIV-1 glycan-dependent broadly neutralizing antibodies. Sci Transl Med. 10.1126/scitranslmed.aai7514
Bonsor, D. A., Alexander, P., Snead, K., Hartig, N., Drew, M., Messing, S., Finci, L. I., Nissley, D. V., McCormick, F., Esposito, D., Rodriguez-Viciana, P., Stephen, A. G., and Simanshu, D. K. (2022) Structure of the SHOC2-MRAS-PP1C complex provides insights into RAF activation and Noonan syndrome. Nat Struct Mol Biol. 29, 966-977
Born, D. A., Ulrich, E. C., San Ju, K. -, Peck, S. C., van der Donk, W. A., and Drennan, C. L. (2017) Structural basis for methylphosphonate biosynthesis. Science. 358, 1336-1339

Pages