Strategic Approaches to Overcome Resistance against Gram-Negative Pathogens Using β-Lactamase Inhibitors and β-Lactam Enhancers: Activity of Three Novel Diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234.
Publication Type:
Journal ArticleSource:
J Med Chem, Volume 61, Issue 9, p.4067-4086 (2018)Abstract:
<p>Limited treatment options exist to combat infections caused by multidrug-resistant (MDR) Gram-negative bacteria possessing broad-spectrum β-lactamases. The design of novel β-lactamase inhibitors is of paramount importance. Here, three novel diazabicyclooctanes (DBOs), WCK 5153, zidebactam (WCK 5107), and WCK 4234 (compounds 1-3, respectively), were synthesized and biochemically characterized against clinically important bacteria. Compound 3 inhibited class A, C, and D β-lactamases with unprecedented k/ K values against OXA carbapenemases. Compounds 1 and 2 acylated class A and C β-lactamses rapidly but not the tested OXAs. Compounds 1-3 formed highly stable acyl-complexes as demonstrated by mass spectrometry. Crystallography revealed that 1-3 complexed with KPC-2 adopted a "chair conformation" with the sulfate occupying the carboxylate binding region. The cefepime-2 and meropenem-3 combinations were effective in murine peritonitis and neutropenic lung infection models caused by MDR Acinetobacter baumannii. Compounds 1-3 are novel β-lactamase inhibitors that demonstate potent cross-class inhibition, and clinical studies targeting MDR infections are warranted.</p>