Found 151 results
Filters: First Letter Of Last Name is C  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Chou, C. - Y., and Tong, L. (2011) Structural and biochemical studies on the regulation of biotin carboxylase by substrate inhibition and dimerization. J Biol Chem. 286, 24417-25
Choi, P. H., Vu, T. Minh Ngoc, Pham, H. Thi, Woodward, J. J., Turner, M. S., and Tong, L. (2017) Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proc Natl Acad Sci U S A. 114, E7226-E7235
Choi, M., Sukumar, N., F Mathews, S., Liu, A., and Davidson, V. L. (2011) Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface. Biochemistry. 50, 1265-73
Choi, E. H., Suh, S., Sander, C. L., Hernandez, C. J. Ortiz, Bulman, E. R., Khadka, N., Dong, Z., Shi, W., Palczewski, K., and Kiser, P. D. (2018) Insights into the pathogenesis of dominant retinitis pigmentosa associated with a D477G mutation in RPE65. Hum Mol Genet. 10.1093/hmg/ddy128
Choi, J. Yong, Fuerst, R., Knapinska, A. M., Taylor, A. B., Smith, L., Cao, X., P Hart, J., Fields, G. B., and Roush, W. R. (2017) Structure-Based Design and Synthesis of Potent and Selective Matrix Metalloproteinase 13 Inhibitors. J Med Chem. 60, 5816-5825
Choi, M., Sukumar, N., Liu, A., and Davidson, V. L. (2009) Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine. Biochemistry. 48, 9174-84
Choi, P. H., Jo, J., Lin, Y. - C., Lin, M. - H., Chou, C. - Y., Dietrich, L. E. P., and Tong, L. (2016) A distinct holoenzyme organization for two-subunit pyruvate carboxylase. Nat Commun. 7, 12713
Cho, U. - S., and Harrison, S. C. (2011) Recognition of the centromere-specific histone Cse4 by the chaperone Scm3. Proc Natl Acad Sci U S A. 108, 9367-71
Cho, J., Lee, C. - J., Zhao, J., Young, H. E., and Zhou, P. (2016) Structure of the essential Haemophilus influenzae UDP-diacylglucosamine pyrophosphohydrolase LpxH in lipid A biosynthesis. Nat Microbiol. 1, 16154
Cho, J., Lee, M., C Cochrane, S., Webster, C. G., Fenton, B. A., Zhao, J., Hong, J., and Zhou, P. (2020) Structural basis of the UDP-diacylglucosamine pyrophosphohydrolase LpxH inhibition by sulfonyl piperazine antibiotics. Proc Natl Acad Sci U S A. 117, 4109-4116
Cho, U. - S., and Harrison, S. C. (2011) Ndc10 is a platform for inner kinetochore assembly in budding yeast. Nat Struct Mol Biol. 19, 48-55
Cho, J., Lee, C. - J., Zhao, J., Young, H. E., and Zhou, P. (2016) Structure of the essential Haemophilus influenzae UDP-diacylglucosamine pyrophosphohydrolase LpxH in lipid A biosynthesis. Nature Microbiology. 10.1038/nmicrobiol.2016.154
Chitrakar, I., Iuliano, J. N., He, Y. L., Woroniecka, H. A., Collado, J. Tolentino, Wint, J. M., Walker, S. G., Tonge, P. J., and French, J. B. (2020) Structural Basis for the Regulation of Biofilm Formation and Iron Uptake in by the Blue-Light-Using Photoreceptor, BlsA. ACS Infect Dis. 6, 2592-2603
Chinai, J. M., Taylor, A. B., Ryno, L. M., Hargreaves, N. D., Morris, C. A., P Hart, J., and Urbach, A. R. (2011) Molecular recognition of insulin by a synthetic receptor. J Am Chem Soc. 133, 8810-3
Chien, P., Grant, R. A., Sauer, R. T., and Baker, T. A. (2007) Structure and substrate specificity of an SspB ortholog: design implications for AAA+ adaptors. Structure. 15, 1296-305
Chiang, Y. - C., Levsh, O., Lam, C. Kei, Weng, J. - K., and Wang, Y. (2018) Structural and dynamic basis of substrate permissiveness in hydroxycinnamoyltransferase (HCT). PLoS Comput Biol. 14, e1006511
Chevalier, A., Silva, D. - A., Rocklin, G. J., Hicks, D. R., Vergara, R., Murapa, P., Bernard, S. M., Zhang, L., Lam, K. - H., Yao, G., Bahl, C. D., Miyashita, S. - I., Goreshnik, I., Fuller, J. T., Koday, M. T., Jenkins, C. M., Colvin, T., Carter, L., Bohn, A., Bryan, C. M., D Fernández-Velasco, A., Stewart, L., Dong, M., Huang, X., Jin, R., Wilson, I. A., Fuller, D. H., and Baker, D. (2017) Massively parallel de novo protein design for targeted therapeutics. Nature. 550, 74-79
Cheung, J., Mahmood, A., Kalathur, R., Liu, L., and Carlier, P. R. (2018) Structure of the G119S Mutant Acetylcholinesterase of the Malaria Vector Anopheles gambiae Reveals Basis of Insecticide Resistance. Structure. 26, 130-136.e2
Chetty, A. K., Sexton, J. A., Ha, B. Hak, Turk, B. E., and Boggon, T. J. (2020) Recognition of physiological phosphorylation sites by p21-activated kinase 4. J Struct Biol. 211, 107553
Cheng, S., Park, Y., Kurleto, J. D., Jeon, M., Zinn, K., Thornton, J. W., and zkan, E. Ö. (2019) Family of neural wiring receptors in bilaterians defined by phylogenetic, biochemical, and structural evidence. Proc Natl Acad Sci U S A. 10.1073/pnas.1818631116
Cheng, Z., Cheung, P., Kuo, A. J., Yukl, E. T., Wilmot, C. M., Gozani, O., and Patel, D. J. (2014) A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36. Genes Dev. 28, 1758-71
Cheng, P. - N., Liu, C., Zhao, M., Eisenberg, D., and Nowick, J. S. (2012) Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity.. Nat Chem. 4, 927-33
Cheng, W., and Li, W. (2014) Structural insights into ubiquinone biosynthesis in membranes. Science. 343, 878-81
Cheng, S., Ashley, J., Kurleto, J. D., Lobb-Rabe, M., Park, Y. Jenny, Carrillo, R. A., and zkan, E. Ö. (2019) Molecular basis of synaptic specificity by immunoglobulin superfamily receptors in . Elife. 10.7554/eLife.41028
Chen, Q., Sun, X., Zhou, X. -hong, Liu, J. -huan, Wu, J., Zhang, Y., and Wang, J. -huai (2013) N-terminal horseshoe conformation of DCC is functionally required for axon guidance and might be shared by other neural receptors. J Cell Sci. 126, 186-95