Publications

Found 2725 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Xiong, Y., and Steitz, T. A. (2004) Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Nature. 430, 640-5
Hong, S., Sunita, S., Maehigashi, T., Hoffer, E. D., Dunkle, J. A., and Dunham, C. M. (2018) Mechanism of tRNA-mediated +1 ribosomal frameshifting. Proc Natl Acad Sci U S A. 10.1073/pnas.1809319115
Kamadurai, H. B., Qiu, Y., Deng, A., Harrison, J. S., Macdonald, C., Actis, M., Rodrigues, P., Miller, D. J., Souphron, J., Lewis, S. M., Kurinov, I., Fujii, N., Hammel, M., Piper, R., Kuhlman, B., and Schulman, B. A. (2013) Mechanism of ubiquitin ligation and lysine prioritization by a HECT E3. Elife. 2, e00828
Wu, K., Peng, G., Wilken, M., Geraghty, R. J., and Li, F. (2012) Mechanisms of host receptor adaptation by severe acute respiratory syndrome coronavirus. J Biol Chem. 287, 8904-11
Yang, H., Jiang, X., Li, B., Yang, H. J., Miller, M., Yang, A., Dhar, A., and Pavletich, N. P. (2017) Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature. 552, 368-373
Ubah, O. C., Lake, E. W., Gunaratne, G. S., Gallant, J. P., Fernie, M., Robertson, A. J., Marchant, J. S., Bold, T. D., Langlois, R. A., Matchett, W. E., Thiede, J. M., Shi, K., Yin, L., Moeller, N. H., Banerjee, S., Ferguson, L., Kovaleva, M., Porter, A. J., Aihara, H., LeBeau, A. M., and Barelle, C. J. (2021) Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nat Commun. 12, 7325
Geiger, T., Lara-Tejero, M., Xiong, Y., and Galán, J. E. (2020) Mechanisms of substrate recognition by a typhoid toxin secretion-associated muramidase. Elife. 10.7554/eLife.53473
Ruangprasert, A., Maehigashi, T., Miles, S. J., Giridharan, N., Liu, J. X., and Dunham, C. M. (2014) Mechanisms of toxin inhibition and transcriptional repression by Escherichia coli DinJ-YafQ. J Biol Chem. 289, 20559-69
Adachi, M. S., Taylor, A. B., P Hart, J., and Fitzpatrick, P. F. (2012) Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1. Biochemistry. 51, 4888-97
Adachi, M. S., Taylor, A. B., P Hart, J., and Fitzpatrick, P. F. (2012) Mechanistic and structural analyses of the roles of active site residues in yeast polyamine oxidase Fms1: characterization of the N195A and D94N enzymes. Biochemistry. 51, 8690-7
Youn, B., Kim, S. - J., Moinuddin, S. G. A., Lee, C., Bedgar, D. L., Harper, A. R., Davin, L. B., Lewis, N. G., and Kang, C. (2006) Mechanistic and structural studies of apoform, binary, and ternary complexes of the Arabidopsis alkenal double bond reductase At5g16970. J Biol Chem. 281, 40076-88
Fang, J., Jiang, J., Leichter, S. M., Liu, J., Biswal, M., Khudaverdyan, N., Zhong, X., and Song, J. (2022) Mechanistic basis for maintenance of CHG DNA methylation in plants. Nat Commun. 13, 3877
Liou, G., Chiang, Y. - C., Wang, Y., and Weng, J. - K. (2018) Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants. J Biol Chem. 10.1074/jbc.RA118.005695
Grossmann, N., Vakkasoglu, A. S., Hulpke, S., Abele, R., Gaudet, R., and Tampé, R. (2014) Mechanistic determinants of the directionality and energetics of active export by a heterodimeric ABC transporter. Nat Commun. 5, 5419
Jensen, J. L., Balbo, A., Neau, D. B., Chakravarthy, S., Zhao, H., Sinha, S. C., and Colbert, C. L. (2015) Mechanistic Implications of the Unique Structural Features and Dimerization of the Cytoplasmic Domain of the Pseudomonas Sigma Regulator, PupR. Biochemistry. 54, 5867-77
Matsuyama, B. Y., Krasteva, P. V., Baraquet, C., Harwood, C. S., Sondermann, H., and Navarro, M. V. A. S. (2016) Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 113, E209-18
Melnikov, S. V., Khabibullina, N. F., Mairhofer, E., Vargas-Rodriguez, O., Reynolds, N. M., Micura, R., Söll, D., and Polikanov, Y. S. (2018) Mechanistic insights into the slow peptide bond formation with D-amino acids in the ribosomal active site. Nucleic Acids Res. 10.1093/nar/gky1211
Cavalier, M. C., Yim, Y. - S., Asamizu, S., Neau, D., Almabruk, K. H., Mahmud, T., and Lee, Y. - H. (2012) Mechanistic insights into validoxylamine A 7'-phosphate synthesis by VldE using the structure of the entire product complex. PLoS One. 7, e44934
Nam, D., Bacik, J. - P., Khade, R. L., Aguilera, M. Camila, Wei, Y., Villada, J. D., Neidig, M. L., Zhang, Y., Ando, N., and Fasan, R. (2023) Mechanistic manifold in a hemoprotein-catalyzed cyclopropanation reaction with diazoketone. Nat Commun. 14, 7985
Brohawn, S. G., Wang, W., Handler, A., Campbell, E. B., Schwarz, J. R., and MacKinnon, R. (2019) The mechanosensitive ion channel TRAAK is localized to the mammalian node of Ranvier. Elife. 10.7554/eLife.50403
Dionne, G., Qiu, X., Rapp, M., Liang, X., Zhao, B., Peng, G., Katsamba, P. S., Ahlsen, G., Rubinstein, R., Potter, C. S., Carragher, B., Honig, B., Müller, U., and Shapiro, L. (2018) Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture. Neuron. 99, 480-492.e5
Lavoie, H., Sahmi, M., Maisonneuve, P., Marullo, S. A., Thevakumaran, N., Jin, T., Kurinov, I., Sicheri, F., and Therrien, M. (2018) MEK drives BRAF activation through allosteric control of KSR proteins. Nature. 10.1038/nature25478
Huang, H. - T., Seo, H. - S., Zhang, T., Wang, Y., Jiang, B., Li, Q., Buckley, D. L., Nabet, B., Roberts, J. M., Paulk, J., Dastjerdi, S., Winter, G. E., McLauchlan, H., Moran, J., Bradner, J. E., Eck, M. J., Dhe-Paganon, S., Zhao, J. J., and Gray, N. S. (2017) MELK is not necessary for the proliferation of basal-like breast cancer cells. Elife. 10.7554/eLife.26693
Ray, L. C., Das, D., Entova, S., Lukose, V., Lynch, A. J., Imperiali, B., and Allen, K. N. (2018) Membrane association of monotopic phosphoglycosyl transferase underpins function. Nat Chem Biol. 10.1038/s41589-018-0054-z
Shen, G., Li, S., Cui, W., Liu, S., Yang, Y., Gross, M., and Li, W. (2018) Membrane Protein Structure in Live Cells: Methodology for Studying Drug Interaction by Mass Spectrometry-Based Footprinting. Biochemistry. 57, 286-294

Pages